УТВЕРЖДАЮ

Первый заместитель генерального директора-

заместитель по научной работе фГУП «ВНИИФ ГРИ»

А.Н. Щипунов

2016 г.

остирель остирель остирель остирель

инструкция

Пробники электрического поля РММ EP-600, PMM EP-601, PMM EP-602, PMM EP-603

> МЕТОДИКА ПОВЕРКИ EP60XEN-40315-2.09 МП

1.p.64859-16

Содержание

1		Вводная часть	3
2		Операции поверки	3
3		Средства поверки	3
4		Требования к квалификации поверителей	4
5		Требования безопасности	4
6		Условия поверки	4
7		Подготовка к проведению поверки	5
8		Проведение поверки	5
	8.1	Внешний осмотр	5
	8.2	Опробование	5
	8.3	Определение относительной погрешности измерений напряженности электрического поля пробником ЕР-600	7
	8.4	Определение относительной погрешности измерений напряженности электрического поля пробником EP-601	8
	8.5	Определение относительной погрешности измерений напряженности электрического поля пробником ЕР-602	9
	8.6	Определение относительной погрешности измерений напряженности электрического поля пробником ЕР-603	10
	8.7	Определение изотропности измерений напряженности электрического поля пробником EP-60x	1 1
9		Оформление результатов поверки	11 12
		- L-L L-A L-A	12

1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика поверки (далее МП) устанавливает методы и средства первичной и периодической поверок пробников электрического поля PMM EP-600, PMM EP-601, PMM EP-602 (далее пробники EP-60x).
- 1.2 Первичной поверке подлежат пробники EP-60x, ввозимые по импорту и выходящие из ремонта.

Периодической поверке подлежат пробники ЕР-60х, находящиеся в эксплуатации и на хранении.

1.3 Интервал между поверками 1 (один) год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки пробников EP-60х должны быть выполнены операции, приведенные в таблице 1.

Таблица 1

	Пункт МП	Проведение операций при	
Наименование операции		первичной поверке	периодической поверке
Внешний осмотр	8.1	+	+
Опробование	8.2	+	+
Определение относительной погрешности измерений напряженности электрического поля пробником EP-600	8.3	+	+
Определение относительной погрешности измерений напряженности электрического поля пробником EP-601	8.4	+	+
Определение относительной погрешности измерений напряженности электрического поля пробником EP-602	8.5	+	+
Определение относительной погрешности измерений напряженности электрического поля пробником EP-603	8.6	+	+
Определение изотропности измерений напряженности электрического поля пробником EP-60x	8.7	+	_

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки пробников ЕР-60х должны быть применены средства измерений, приведенные в таблице 2.

Таблица 2

Пункт	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего
МΠ	технические требования, и (или) метрологические и основные технические
	характеристики средства поверки
	Государственный рабочий эталон единицы плотности потока электромагнитной энергии. Установка для поверки измерителей плотности потока энергии П1-9, диапазон рабочих
8.3 – 8.6	частот от 0,3 до 39,65 ГГц, диапазон воспроизводимых значений плотности потока энергии в режиме непрерывной генерации от $1 \cdot 10^{-2}$ до $2 \cdot 10^3$ Вт/м ² , пределы допускаемой относительной погрешности воспроизведения плотности потока энергии \pm 0,5 дБ

Пункт МП	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
8.3 – 8.7	Государственный рабочий эталон единицы напряженности электрического поля 2 разряда в диапазоне от 0,01 до 300 МГц, диапазон воспроизведения НЭП от 1 до 1500 В·м $^{-1}$, пределы допускаемой относительной погрешности воспроизведения НЭП \pm 7 %
8.2 – 8.7	Персональный компьютер с процессором Pentium, 16 Mb оперативной памяти, 10 Mb свободного места на жестком диске, операционная система Windows (-XP, -7), наличие COM или USB порта

- 3.2 Допускается использовать аналогичные средства поверки, которые обеспечат измерение соответствующих параметров с требуемой точностью.
- 3.3 Средства поверки должны быть исправны, поверены и иметь свидетельства о поверке в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 года № 1815.
- 3.4 При поверке использовать персональный компьютер (далее ПК) с установленным с компакт-диска, входящего в комплект поставки, программным обеспечением WinEP600 (далее ПО WinEP600).

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 Поверка должна осуществляться лицами, аттестованными в качестве поверителей в установленном порядке и имеющим квалификационную группу электробезопасности не ниже второй.
- 4.2 Перед проведением поверки поверитель должен предварительно ознакомиться с документом «Пробники электрического поля РММ ЕР-600, РММ ЕР-601, РММ ЕР-602, РММ ЕР-603. Руководство по эксплуатации ЕР60XEN-40315-2.09 РЭ» (далее ЕР60XEN-40315-2.09 РЭ).

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки необходимо соблюдать требования безопасности, регламентируемые Межотраслевыми правилами по охране труда (правила безопасности) ПОТ Р М-016-2001, РД 153-34.0-03.150-00, а также требования безопасности, приведённые в эксплуатационной документации на пробники EP-60х и средства поверки.
 - 5.2 Средства поверки должны быть надежно заземлены в соответствии с документацией.
- 5.3 Размещение и подключение измерительных приборов разрешается производить только при выключенном питании.
 - 5.4 Не вносить пробник EP-60х в поле с напряженностью больше максимально допустимой.
- 5.5 Опто-волоконный кабель подключать и отключать воздействием только на коннекторы. Исключать натягивание опто-волоконного кабеля и попадание пыли и грязи в оптические коннекторы.
- 5.6 Соблюдать следующих минимальных расстояний между пробником и любой проводящей поверхностью: 250 мм, в диапазоне от 5 кГц до 3 МГц, 150 мм в диапазоне от 3 МГц до 10 МГц, 100 мм, в диапазоне более 10 МГц.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха от 15 до 25 °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 630 до 795 мм рт. ст.

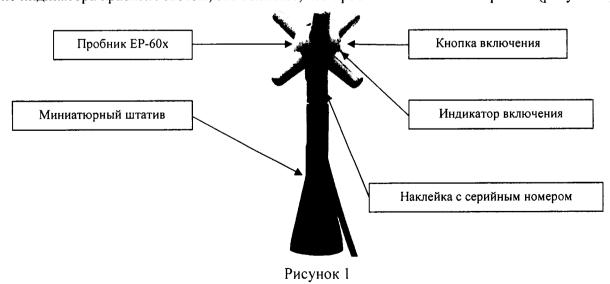
7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

7.1 Перед проведением операций поверки необходимо произвести подготовительные работы, оговоренные в РММ EP-600-2016 РЭ на измерители пробник EP-60х и в руководствах по эксплуатации применяемых средств поверки.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

- 8.1.1 Внешний осмотр каждого пробника ЕР-60х проводить визуально без вскрытия. При этом необходимо проверить:
 - комплектность, маркировку и пломбировку согласно эксплуатационной документации;
 - наличие серийного номера на фирменной наклейке пробника EP-600х (рисунок 1);
- состояние соединительных оптоволоконных кабелей (далее ВОЛС), входящих в комплект поставки.
 - 8.1.2 Результат внешнего осмотра считать положительным, если:
- комплектность, маркировка и пломбировка каждого пробника EP-60x соответствует документу EP60XEN-40315-2.09 PЭ;
 - на фирменной наклейке пробника ЕР-600х имеется серийный номер;
 - отсутствуют видимые механические повреждения каждого пробника ЕР-60х;
 - ВОЛС, входящих в комплект поставки, не имеют видимых повреждений.


В противном случае результаты внешнего осмотра считать отрицательными и последующие операции поверки не проводить.

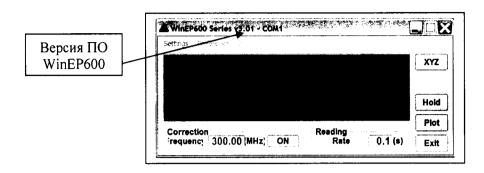
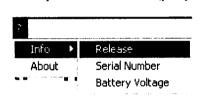
8.2 Опробование

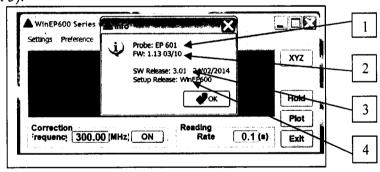
- 8.2.1 Установить на ПК программное обеспечение WinEP600 (далее ПО WinEP600) с компакт-диска, входящего в комплект поставки. После успешной установки ПО WinEP600 на экране монитора ПК контролировать появление иконки « »».
- 8.2.2 Подключить конвертер оптика-RS232 к доступному COM порту ПК (или подключить конвертер USB-RS232 к конвертеру оптика-RS232 и к доступному USB порту ПК).

Выполнить настройку СОМ порта (или выполнить настройку USB порта)

- 8.2.3 Выполнить зарядку аккумулятора пробника ЕР-600. Установить пробник ЕР-600 на миниатюрный штатив (рисунок 1). Подключить пробник ЕР-600 к ПК.
- 8.2.4 Включить пробник EP-600 кратковременным нажатием на кнопку и контролировать последовательное загорание индикатора зеленым, красным и синим; затем контролировать мигание индикатора красным светом, это означает, что пробник EP600 готов к работе (рисунок 1).

8.2.5 Запустить ПО WinEP600, нажав иконку на рабочем столе ПК. Через (5 – 7) секунд на экране монитора ПК наблюдать окно, приведенное на рисунке 2.


Рисунок 2

- 8.2.6 Проверка идентификационных данных (признаков) ПО
- 8.2.6.1 В левом верхнем углу окна (рисунок 2) наблюдать версию ПО WinEP600.
- 8.2.6.2 Результат проверки идентификационных данных (признаков) ПО считать положительными, если версия ПО WinEP600 v3.01 и выше.

В противном случае результаты проверки идентификационных данных (признаков) ПО WinEP600 считать отрицательными и последующие операции поверки не проводить.

8.2.6.3 Последовательно нажать виртуальные кнопки «?» (Справка), «info» (информация) «Release» и наблюдать наименование и версию внешнего ПО WinEP600, текущую версию прошивки пробника EP-60х (рисунок 3).

- 1 тип подключенного пробника
- 2 версия прошивки подключенного пробника
- 3 версия внешнего ПО
- 4 наименование внешнего ПО

Рисунок 3

Результат наблюдения зафиксировать в рабочем журнале.

- 8.2.7 Проверить функционирование виртуальных кнопок управления ПО WinEP600.
- 8.2.8 Последовательно нажать виртуальные кнопки «?» (Справка), «info» (информация) «Serial Namber» и наблюдать серийный номер пробника EP-60х (рисунок 4).

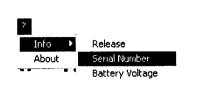


Рисунок 4

Результат наблюдения зафиксировать в рабочем журнале.

- 8.2.9 Результаты опробования пробника ЕР-60х считать положительными, если:
- пробник EP-60x устанавливается на миниатюрный штатив, входящий в комплект поставки:
 - ПО WinEP600 установлено на ПК;
- результаты проверки идентификационных данных (признаков) ПО WinEP600 положительные (версия: v3.01 или выше);
- после включения пробника EP-60х наблюдалось последовательное загорание индикатора зеленым, красным и синим; затем мигание индикатора красным светом;
 - пробник EP-60х подключается к ПК;
- после подключения пробника EP-60х к ПК (к COM порту или к USB порту) и запуска ПО WinEP600 на экране монитора ПК наблюдалось появление окна, приведенного на рисунке 2;
 - виртуальные кнопки управления ПО WinEP600 функционируют;
- серийный номер на фирменной наклейке (рисунок 1) совпадает с серийным номером, полученным в п. 8.2.8.

В противном случае результаты опробования считать отрицательными и последующие операции поверки не проводить.

8.3 Определение относительной погрешности измерений напряженности электрического поля пробником EP-600

- 8.3.1 Определение относительной погрешности измерений НЭП $\delta_{\rm HЭ\Pi}^{\rm EP600}$ пробником EP-600 проводить:
- с использованием Государственного рабочего эталона единицы напряженности электрического поля 2 разряда в диапазоне от 0,01 до 300 МГц (далее РЭНЭП-001/300М) на частотах f_1 : 0,3; 1,0; 5,0; 30,0; 100,0; 300,0 МГц, при значении НЭП в месте расположения пробника EP-600 $E_{3T}^1 = 6 \text{ B·m}^{-1}$; только при первичной поверке на частоте $f_2 = 0,1$ МГц при значениях НЭП в месте расположения пробника EP-600 $E_{3T}^2 = 1,0$; 1,5; 5,0; 20; 50; 100; 140 В·м⁻¹;
- с использованием Государственного рабочего эталона единицы плотности потока электромагнитной энергии установки для поверки измерителей плотности потока энергии П1-9 (далее П1-9) на частотах f_3 : 0,30; 0,70; 1,00; 1,80; 2,10; 2,40; 3,00; 4,00; 5,00; 6,00; 7,00; 8,00; 9,00; 9,25 ГГц, при значении НЭП в месте расположения пробника EP-600 $\Pi_{3T}^3 \approx 10$ мкВт·см⁻² ($E_{3T}^3 \approx 6,14$ В·м⁻¹).

При проведении поверки с помощью П1-9 для перевода значений плотности потока электромагнитной энергии (далее – ППЭ) П, в [мкВт·см $^{-2}$], в значения напряженности электрического поля (далее – НЭП) Е, в [В·м $^{-1}$], и обратно, использовать формулы:

$$E = \sqrt{3,77 \cdot \Pi} \,; \tag{1}$$

$$\Pi = \frac{1}{3.77} \cdot \left(E\right)^2. \tag{2}$$

- 8.3.2 Выполнить зарядку аккумулятора пробник EP-600 (при необходимости). Установить пробник EP-600 на миниатюрный штатив (рисунок 1). Подключить пробник EP-600 к ПК. Установить пробник EP-600 в рабочую зону РЭНЭП-001/300М.
- 8.3.3 Включить пробник EP-600 кратковременным нажатием на кнопку и проконтролировать его готовность к работе по последовательному загоранию индикатора зеленым, красным и синим, а затем по миганию индикатора красным светом (рисунок 1).
- 8.3.4 Установить виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «**Total»** при выключенной коррекции частоты.

8.3.5 Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{\Im T}^1 = 6~\mathrm{B\cdot m}^{-1}$ на частоте $f_I = 0.3~\mathrm{M}\Gamma\mathrm{u}$.

Произвести отсчет измеренного пробником EP-600 значения НЭП $E_{\mathit{ИЗМ}}^{1}$. Результат измерений зафиксировать в рабочем журнале.

- 8.3.6 Выполнить п. 8.3.5 для остальных частот f_I , указанных в п. 8.3.1.
- 8.3.7 Только при первичной поверке. Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{\Im T}^2=1~{\rm B\cdot m}^{-1}$ на частоте $f_2=0,1~{\rm M\Gamma u}$. Произвести отсчет измеренного пробником ЕР-600 значения НЭП E_{23M}^2 . Результат измерений зафиксировать в рабочем журнале.

Выполнить измерения для остальных значений E_{2T}^2 , указанных в п. 8.3.1.

- 8.3.8 Выполнить п.п. 8.3.5 8.3.7 устанавливая виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «**Total»** при включенной коррекции частот.
 - 8.3.9 Установить пробник ЕР-600 в рабочую зону П1-9. Выполнить п.п. 8.3.3.
- 8.3.10 Устанавливая последовательно в рабочей зоне в П1-9 значения ППЭ E_{3T}^3 , на частотах f_3 , проводить отсчеты измеренного пробником EP-600 значений НЭП $E_{\mathit{ИЗМ}}^3$, при выключенной коррекции частоты. Результаты измерений зафиксировать в рабочем журнале.
- 8.3.11 Для всех полученных значений $E^1_{\rm H3M}$, $E^2_{\rm H3M}$, $E^3_{\rm H3M}$ вычислить значения относительной погрешности измерений НЭП $\delta^{\rm Probe\ EF0391}_{\rm HЭ\Pi}$, в дБ, по формуле

$$\delta_{\rm H3\Pi}^{\rm EP600} = 20 \cdot \lg \left(\frac{E_{\rm H3M}^{\rm i}}{E_{\rm 3T}^{\rm i}} \right), \tag{3}$$

гле i = 1, 2, 3.

Результат вычислений зафиксировать в рабочем журнале.

- 8.3.12 Результаты поверки считать положительными, если все полученные значения $\delta_{H \ni \Pi}^{EP600}$ находятся в пределах:
 - $-\pm 3.2$ дБ при измерениях с выключенной коррекцией;
 - $-\pm 2.0$ дБ при измерениях с включенной коррекцией.

В противном случае результаты поверки считать отрицательными.

8.4 Определение относительной погрешности измерений НЭП пробником ЕР-601

- 8.4.1 Определение относительной погрешности измерений НЭП $\delta_{\rm HЭ\Pi}^{\rm EP601}$ пробником EP-601 проводить:
- с использованием РЭНЭП-001/300М на частотах f_I : 0,05; 0,1; 0,3; 1,0; 5,0; 30,0; 100,0; 300,0 МГц, при значении НЭП в месте расположения пробника ЕР-600 $E_{3T}^1 = 6 \text{ B·m}^{-1}$; только при первичной поверке частоте $f_2 = 0,1$ МГц при значениях НЭП в месте расположения пробника ЕР-600 $E_{3T}^2 = 1,5$; 5, 20, 50, 100, 200, 300, 500 В·м⁻¹;
- с использованием П1-9 на частотах f_3 : 0,30; 0,70; 1,00; 1,80; 2,1; 2,4; 3,00; 4,00; 5,00; 6,00; 7,00; 7,50; 8,00; 9,00; 9,25 ГГц, при значении ППЭ в месте расположения пробника EP-600 $\Pi_{\Im T}^3 = (17,0-68,0)$ мкВт·см $^{-2}$ ($E_{\Im T}^3 \approx$ от 8 до 16 В·м $^{-1}$).
- 8.4.2 Выполнить зарядку аккумулятора пробник EP-601 (при необходимости). Установить пробник EP-601 на миниатюрный штатив (рисунок 1). Подключить пробник EP-601 к ПК. Установить пробник EP-601 в рабочую зону РЭНЭП-001/300М.

- 8.4.3 Включить пробник EP-601 кратковременным нажатием на кнопку и проконтролировать его готовность к работе по последовательному загоранию индикатора зеленым, красным и синим, а затем по миганию индикатора красным светом (рисунок 1).
- 8.4.4 Установить виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «**Total»** при выключенной коррекции частоты.
- 8.4.5 Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{\Im T}^1=6~\mathrm{B\cdot m}^{-1}$ на частоте $f_I=0,1~\mathrm{M\Gamma \mu}.$

Произвести отсчет измеренного пробником EP-601 значения НЭП $E_{{\it изм}}^1$. Результат измерений зафиксировать в рабочем журнале.

- 8.4.6 Выполнить п. 8.4.5 для остальных частот f_l , указанных в п. 8.4.1.
- 8.4.7 <u>Только при первичной поверке.</u> Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{3T}^2 = 1,5 \text{ B·m}^{-1}$ на частоте $f_2 = 0,1 \text{ М}\Gamma$ ц. Произвести отсчет измеренного пробником ЕР-601 значения НЭП $E_{u_{3M}}^2$. Результат измерений зафиксировать в рабочем журнале.

Выполнить измерения для остальных значений E_{2T}^2 , указанных в п. 8.4.1.

- 8.4.8 Выполнить п.п.8.4.5 8.4.7 устанавливая виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «**Total**» при включенной коррекции частот f_1 , f_2 .
 - 8.4.9 Установить пробник ЕР-601 в рабочую зону П1-9. Выполнить п.п. 8.4.3.
- 8.4.10 Устанавливая последовательно в рабочей зоне в П1-9 значения ППЭ $E_{\Im T}^3$ на частоте f_3 , проводить отсчеты измеренного пробником EP-601 значения НЭП $E_{\varOmega M}^3$ при выключенной коррекции частоты и при включенной коррекции частоты. Результаты измерений зафиксировать в рабочем журнале.
- 8.4.11 Для всех полученных значений E^1_{H3M} , E^2_{H3M} , E^3_{H3M} вычислить значения относительной погрешности измерений НЭП $\delta^{\text{EP601}}_{\text{HЭП}}$, в дБ, по формуле

$$\delta_{\rm H9\Pi}^{\rm EP601} = 20 \cdot \lg \left(\frac{E_{\rm M3M}^{\rm i}}{E_{\rm 9T}^{\rm i}} \right), \tag{4}$$

где i = 1, 2, 3.

Результат вычислений зафиксировать в рабочем журнале.

- 8.4.12 Результаты поверки считать положительными, если все полученные значения $\delta_{H \ni \Pi}^{EP601}$ аходятся в пределах:
 - $-\pm 3,2$ дБ при измерениях с выключенной коррекцией;
 - $-\pm 2,0$ дБ при измерениях с включенной коррекцией.

В противном случае результаты поверки считать отрицательными.

8.5 Определение относительной погрешности измерений НЭП пробником ЕР-602

- 8.5.1 Определение относительной погрешности измерений НЭП $\delta_{\rm HЭ\Pi}^{\rm EP602}$ пробником EP-602 проводить:
- с использованием РЭНЭП-001/300М на частотах f_1 : 0,03; 0,05; 0,1; 0,3; 1,0; 5,0; 30,0; 100,0; 300,0 МГц, при значении НЭП в месте расположения пробника EP-600 $E_{\Im T}^1=6~{\rm B\cdot m}^{-1}$; только при первичной поверке частоте $f_2=0,1~{\rm M\Gamma}$ ц при значениях НЭП в месте расположения пробника EP-600 $E_{\Im T}^2=5, 20, 50, 100, 200, 300, 500, 1000, 1500~{\rm B\cdot m}^{-1}$;
- с использованием П1-9 на частотах f_3 : 0,30; 0,70; 1,00; 1,80; 2,15; 2,45; 3,00; 4,00; 5,00; 6,00; 7,00; 8,00; 9,00; 9,25 ГГц, при значении ППЭ в месте расположения пробника EP-600 $\Pi_{\Im T}^3 = (26,5-60) \,\mathrm{MkBt\cdot cm^{-2}} \, (E_{\Im T}^3 \approx \mathrm{ot} \, 10 \,\mathrm{go} \, 15 \,\mathrm{B\cdot m^{-1}}).$

- 8.5.2 Выполнить зарядку аккумулятора пробник EP-602 (при необходимости). Установить пробник EP-602 на миниатюрный штатив (рисунок 1). Подключить пробник EP-602 к ПК. Установить пробник EP-602 в рабочую зону РЭНЭП-001/300М.
- 8.5.3 Включить пробник EP-602 кратковременным нажатием на кнопку и проконтролировать его готовность к работе по последовательному загоранию индикатора зеленым, красным и синим, а затем по миганию индикатора красным светом (рисунок 1).
- 8.5.4 Установить виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «**Total**» при выключенной коррекции частоты.
- 8.5.5 Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{\Im T}^1=6~\mathrm{B\cdot m}^{-1}$ на частоте $f_I=0,1~\mathrm{M\Gamma \mu}$.

Произвести отсчет измеренного пробником EP-602 значения НЭП $E_{{\it ИЗM}}^{1}$. Результат измерений зафиксировать в рабочем журнале.

- 8.5.6 Выполнить п. 8.5.5 для остальных частот f_l , указанных в п. 8.5.1.
- 8.5.7 <u>Только при первичной поверке.</u> Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{3T}^2 = 5~\mathrm{B\cdot m}^{-1}$ на частоте $f_2 = 0.1~\mathrm{M\Gamma \mu}$. Произвести отсчет измеренного пробником ЕР-602 значения НЭП $E_{u_{3M}}^2$. Результат измерений зафиксировать в рабочем журнале.

Выполнить измерения для остальных значений E_{2T}^2 , указанных в п. 8.5.1.

- 8.5.8 Выполнить п.п. 8.5.5 8.5.7 устанавливая виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «**Total»** при включенной коррекции частот f_1 , f_2 .
 - 8.5.9 Установить пробник ЕР-602 в рабочую зону П1-9. Выполнить п.8.5.3.
- 8.5.10 Устанавливая последовательно в рабочей зоне в Π 1-9 значения $\Pi\Pi$ Э E_{3T}^3 на частоте f_3 проводить отсчеты измеренного пробником EP-602 значения НЭП $E_{изм}^3$ при выключенной коррекции частоты и при включенной коррекции частоты. Результаты измерений зафиксировать в рабочем журнале.
- 8.5.11 Для всех полученных значений $E^1_{{\it H}3M}$, $E^2_{{\it H}3M}$, $E^3_{{\it H}3M}$ вычислить значения относительной погрешности измерений НЭП $\delta^{{\rm EP602}}_{{\rm H}9\Pi}$, в дБ, по формуле

$$\delta_{\rm HJH}^{\rm EP602} = 20 \cdot \lg(\frac{E_{\rm MJM}^{\rm i}}{E_{\rm JT}^{\rm i}}), \tag{5}$$

где i = 1, 2, 3.

Результат вычислений зафиксировать в рабочем журнале.

- 8.5.12 Результаты поверки считать положительными, если все полученные значения $\delta_{H \ni \Pi}^{EP602}$ находятся в пределах:
 - $-\pm 3,2$ дБ при измерениях с выключенной коррекцией;
 - $-\pm 2,0$ дБ при измерениях с включенной коррекцией.

В противном случае результаты поверки считать отрицательными.

8.6 Определение относительной погрешности измерений НЭП пробником ЕР-603

- 8.6.1 Определение относительной погрешности измерений НЭП $\delta_{\rm HЭ\Pi}^{\rm EP603}$ пробником EP-603 проводить:
- с использованием РЭНЭП-001/300М на частотах f_l : 1,0; 5,0; 30,0; 100,0; 300,0 МГц, при значении НЭП в месте расположения пробника EP-603 $E_{\Im T}^1 = 6 \text{ B·m}^{-1}$; только при первичной поверке частоте $f_2 = 5 \text{ МГц}$ при значениях НЭП в месте расположения пробника EP-603 $E_{\Im T}^2 = 1$, 2, 5, 20, 50, 100, 150, 170, В·м⁻¹;

- с использованием П1-9 на частотах f_3 : 0,30; 0,70; 1,00; 1,80; 2,15; 2,45; 3,00; 4,00; 5,00; 6,00; 7,00; 8,00; 9,00; 10,00; 11,00; 12,00; 13,00; 14,00; 15,00; 16,00; 17,00; 18,00 ГГц, при значении ППЭ в месте расположения пробника EP-603 $\Pi_{\Im T}^3 = 10 \text{ мкВт·см}^{-2}$ ($E_{\Im T}^3 \approx 6,14 \text{ B·м}^{-1}$).
- 8.6.2 Выполнить зарядку аккумулятора пробник EP-603 (при необходимости). Установить пробник EP-603 на миниатюрный штатив (рисунок 1). Подключить пробник EP-603 к ПК. Установить пробник EP-603 в рабочую зону РЭНЭП-001/300М.
- 8.6.3 Включить пробник EP-603 кратковременным нажатием на кнопку и проконтролировать его готовность к работе по последовательному загоранию индикатора зеленым, красным и синим, а затем по миганию индикатора красным светом (рисунок 1).
- 8.6.4 Установить виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «**Total**» при выключенной коррекции частоты.
- 8.6.5 Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{\mathfrak{I}}^{1}=6~\mathrm{B\cdot m}^{-1}$ на частоте $f_{I}=1~\mathrm{M}\Gamma$ ц.

Произвести отсчет измеренного пробником EP-603 значения НЭП $E_{\mathit{изм}}^{1}$. Результат измерений зафиксировать в рабочем журнале.

- 8.6.6 Выполнить п. 8.6.5 для остальных частот f_l , указанных в п. 8.6.1.
- 8.6.7 <u>Только при первичной поверке.</u> Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{3T}^2=1~{\rm B\cdot m}^{-1}$ на частоте $f_2=5~{\rm M\Gamma \mu}$. Произвести отсчет измеренного пробником ЕР-603 значения НЭП $E_{{\it изм}}^2$. Результат измерений зафиксировать в рабочем журнале.

Выполнить измерения для остальных значений $E_{\mathfrak{I}T}^2$, указанных в п. 8.6.1.

- 8.6.8 Выполнить п.п. 8.6.5 8.6.7 устанавливая виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «**Total**» при включенной коррекции частот f_1 , f_2 .
 - 8.6.9 Установить пробник ЕР-603 в рабочую зону П1-9. Выполнить п.п. 8.6.3.
- 8.6.10 Устанавливая последовательно в рабочей зоне в П1-9 значения ППЭ $E_{\Im T}^3$ на частотах f_3 проводить отсчеты измеренного пробником EP-603 значения НЭП $E_{{\it и}{\it 3}{\it M}}^3$ при выключенной коррекции частоты. Результаты измерений зафиксировать в рабочем журнале.
- 8.6.11 Для всех полученных значений $E^1_{\mathit{ИЗМ}}$, $E^2_{\mathit{ИЗМ}}$, $E^3_{\mathit{ИЗМ}}$ вычислить значения относительной погрешности измерений НЭП $\delta^{\text{EP}603}_{\text{НЭП}}$, в дБ, по формуле

$$\delta_{\rm H3\Pi}^{\rm EP603} = 20 \cdot \lg \left(\frac{E_{\rm M3M}^{\rm i}}{E_{\rm 3T}^{\rm i}} \right), \tag{6}$$

где i = 1, 2, 3.

Результат вычислений зафиксировать в рабочем журнале.

- 8.6.12 Результаты поверки считать положительными, если все полученные значения $\delta_{H\ni\Pi}^{EP603}$ находятся в пределах:
 - $-\pm 3.2$ дБ при измерениях с выключенной коррекцией;
 - $-\pm 2,0$ дБ при измерениях с включенной коррекцией.

В противном случае результаты поверки считать отрицательными.

8.7 Определение изотропности измерений напряженности электрического поля пробником EP-60x

8.7.1 Выполнить зарядку аккумулятора пробник EP-60х (при необходимости). Установить пробник EP-60х на миниатюрный штатив (рисунок 1). Подключить пробник EP-60х к ПК. Установить пробник EP-60х в рабочую зону РЭНЭП-001/300М. Зафиксировать в рабочем журнале значение углового положения $\varphi = 0^\circ$ пробника EP-60х в рабочей зоне РЭНЭП-001/300М.

- Включить пробник ЕР-60х кратковременным нажатием проконтролировать его готовность к работе по последовательному загоранию индикатора зеленым, красным и синим, а затем по миганию индикатора красным светом (рисунок 1).
- 8.7.3 Установить виртуальными кнопками управления ПО WinEP600 режим измерений НЭП «Total» при выключенной коррекции частоты.
- 8.7.4 Установить в рабочей зоне РЭНЭП-001/300М значение НЭП $E_{3T}^1 = 6 \text{ B·m}^{-1}$ на частоте $f_I = 30 M\Gamma$ ц.

Произвести отсчет измеренного пробником EP-60х значения НЭП $E_{\mu 3 M_0}^{\phi^0}$ при $\phi = 0^\circ$.

Результат измерений зафиксировать в рабочем журнале.

- 8.7.5 Последовательно изменяя угловое положение пробника ЕР-60х в рабочей зоне РЭНЭП-001/300М поворотом миниатюрного штатива вокруг своей оси на $\varphi = 45^{\circ}$, 90°, 135°, 180°, 225°, 270°, 315° проводить отсчеты измеренного пробником EP-60х значения НЭП $E_{{\it H3Mi}}^{{\it p}^{\circ}}$ Результат измерений зафиксировать в рабочем журнале.
 - 8.7.6 Из всех полученных значений $E_{_{H3M}}^{\sigma^*}$ выбрать максимальное $E_{_{\max}}^{\sigma^*}$ и минимальное $E_{_{\min}}^{\sigma^*}$.
 - 8.7.7 Вычислить значение изотропности $I_{H\ni\Pi}^{EP60x}$ пробника EP-60x по формуле

$$I_{H \ni \Pi}^{EP60x} = 20 \cdot \lg \left(E_{\text{max}}^{\phi^*} / E_{\text{min}}^{\phi^*} \right). \tag{7}$$

- 8.7.8 Результаты поверки считать положительными, если:
- $-I_{H \supset \Pi}^{EP600}$, $I_{H \supset \Pi}^{EP601}$ и $I_{H \supset \Pi}^{EP602}$ не более 0,5 дБ; $-I_{H \supset \Pi}^{EP603}$ не более 0,4 дБ.

В противном случае результаты поверки считать отрицательными.

9 ФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Пробник ЕР-60х признается годным, если все результаты поверки положительные.
- 9.2 На пробник ЕР-60х признанным годным, выдает выдается Свидетельство о поверке по установленной форме.
- 9.9 Пробник ЕР-60х, имеющий отрицательные результаты поверки, в обращение не допускается, и на него выдается Извещение о непригодности к применению с указанием причин непригодности

Начальник НИО-2 ФГУП «ВНИИФТРИ»

Начальник лаборатории 202 ФГУП «ВНИИФТРИ»

Старший научный сотрудник НИО-2 ФГУП «ВНИИФТРИ»

В.А.Тищенко
С.А. Колотыгин
В.И. Лукьянов