УТВЕРЖДАЮ АО «НИИФИ» Руководитель ЦИ СИ

ок. С. Горшенин

(30 m) 00

2015 г.

Преобразователь термоэлектрический ДТ 27 МЕТОДИКА ПОВЕРКИ СДАИ.405219.010 МП

1.p.63072-16

Содержание

Вводная часть	3
1 Операции поверки	3
2 Средства поверки	3
3 Требования безопасности	4
4 Условия поверки	4
5 Подготовка к поверке	4
6 Проведение поверки	4
7 Оформление результатов поверки	7
Приложение А Формы таблиц для регистрации результатов поверки	8
Приложение Б. Схемы испытаний	10

Вводная часть

Настоящая методика поверки распространяется на преобразователь термоэлектрический ДТ 27 (ПТ), предназначенный для измерения температуры агрессивных и неагрессивных жидкостей и газов.

Межповерочный интервал – 2 года.

1 Операции поверки

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

	Номер пункта	Проведение операции при		
Наименование операции	методики по	первичной	периодиче-	
	поверке	поверке	ской поверке	
1 Контроль внешнего вида, габаритных и устано-	6.1	да	да	
вочных размеров, комплектности и маркировки				
2 Контроль электрического сопротивления изме-	6.2	да	да	
рительной цепи ПТ				
3 Проверка электрического сопротивления меж-	6.3	да	да	
ду электрически соединенными цепями				
4 Проверка предела допускаемых отклонений	6.4	да	да	
ТЭДС от НСХ преобразования по ГОСТ Р 8.585				

1.2 При получении отрицательного результата при проведении любой операции поверка прекращается.

2 Средства поверки

2.1 При проведении поверки рекомендуется применять средства поверки, указанные в таблице 2.

Таблица 2

Наименование и тип основного или вспомогательного средства поверки	Основные метрологические характеристики
1 Мультиметр цифровой FLuKE 289	Диапазон измеряемых сопротивлений от 0 до $5 \cdot 10^8$ Ом, погрешность $\pm (0.05-8)$ %
2 Мультиметр цифровой Agilent 34411A	Диапазон измеряемых сопротивлений от 100 до $10 \cdot 10^9$ Ом, погрешность $\pm (0.01 + 0.001)$ %
3 Калибратор температуры АТС-650В	от 33 до 650 °C, погрешность ±0,35 °C
4 Термометр сопротивления эталонный	Диапазон (минус 196 – 419,53) °C, 3 разряд
ЭTC-100	
5 Измеритель-регулятор температуры много-канальный прецизионный МИТ 8	Диапазон (минус $200 - 500$) °C, погрешность $\pm (0,0035 - 0,0000t)$)
6 Мультиметр цифровой Agilent 34401A	Диапазон (0 – 1000) В, погрешность $\pm (0,0035 - 0,005)$ %
7 Камера тепла и холода 100 Т	Диапазон температур от минус 80 до 150°С; равномерность температуры в камере ±0,5 %
8 Штангенциркуль ШЦ-ІІІ-1000 -0.05	Диапазон от 0 до 1000 мм; погрешность \pm 0,05 мм

2.2 Допускается замена средств поверки, указанных в таблице 2, другими средствами поверки с равным или более высоким классом точности.

3 Требования безопасности

3.1 При проведении поверки необходимо соблюдать общие требования безопасности по ГОСТ 12.3.019-80 и требования на конкретное поверочное оборудование.

4 Условия поверки

- 4.1 Все операции при проведении поверки, если нет особых указаний, должны проводиться в нормальных климатических условиях:
 - температура воздуха от 15 до 35 °C;
 - относительная влажность воздуха от 45 до 75 %;
 - атмосферное давление от 86 до 106 кПа (от 645 до 795 мм рт. ст.).

5 Подготовка к поверке

- 5.1 Перед проведением поверки испытательные установки, стенды, аппаратура и электроизмерительные приборы должны иметь формуляры (паспорта) и соответствовать стандартам или техническим условиям на них.
 - 5.2 Не допускается применять средства поверки, срок обязательных поверок которых истек.
- 5.3 Предварительный прогрев контрольно-измерительных приборов должен соответствовать требованиям технических описаний и инструкций по эксплуатации на них.
- 5.4 Контрольно-измерительные приборы должны быть надежно заземлены с целью исключения влияния электрических полей на результаты измерений.
 - 5.5 В процессе поверки ПТ менять средства измерений не рекомендуется.
- 5.6 Порядок проведения испытаний должен соответствовать порядку изложения видов испытаний в таблице 1.

6 Проведение поверки

6.1 Контроль внешнего вида и маркировки, габаритных и установочных размеров

6.1.1 Контроль внешнего вида и маркировки ПТ проводить визуальным осмотром.

При проверке внешнего вида руководствоваться следующими требованиями.

На поверхности корпуса ПТ не допускаются:

- а) царапины и вмятины глубиной более 0,2 мм;
- б) цвета побежалости до темно-синего включительно и потемнения некоррозионного характера;
 - в) волнистый, чешуйчатый характер сварных швов с высотой неровностей до 0,5 мм;
 - г) окисления от сварки согласно ОСТ 92-1114 на сварных швах;
 - л) царапины и вмятины от ключа глубиной более 0,4 мм;
 - е) наличие твердого смазочного покрытия суспензией ВНИИНП-213А.

На поверхности втулки соединителя ПТ не допускаются царапины и вмятины глубиной более 0,2 мм.

Гайка накидная СДАИ.753124.019:

- а) на гранях не должна иметь царапины и вмятины от ключа глубиной не более 0,2 мм;
- б) на резьбовую поверхность должно быть нанесено твердое смазочное покрытие суспензией ВНИИНП-213А.

На накидной гайке ПТ должно быть отчетливо выгравировано:

- индекс ПТ;
- порядковый номер исполнения;
- заводской номер.
- 6.1.2 Проверку габаритных размеров проводить по СДАИ.405219.010 СБ измерительными средствами с точностью, обеспечивающей измерение размеров L , L₁, L₂, (500 \pm 10) мм, \varnothing 6,5 мм, 16h12 по СДАИ.405219.010 СБ.

Габаритные и установочные размеры ПТ должны соответствовать СДАИ.405219.010ГЧ.

Результаты испытаний занести в таблицу, выполненную по форме таблицы А.1.

6.2 Контроль электрического сопротивления измерительной цепи ПТ

- 6.2.1 Измерить электрическое сопротивление измерительной цепи между контактами 1 и 2 вилки X1 СДАИ.405219.010Э3, подключив высокопотенциальный вход мультиметра цифрового FLuKE 289 (мультиметр) к контакту «1», а низкопотенциальный вход к контакту «2 » вилки X1.
- 6.2.2 Измерить электрическое сопротивление измерительной цепи между контактами 1 и 2 вилки X1 СДАИ.405219.010 ЭЗ при обратном подключении к измерительной цепи ПТ.
- 6.2.3 Рассчитать среднее значение электрического сопротивления измерительной цепи ПТ как среднеарифметическое измерений по пп. 6.2.1 и 6.2.2.

Электрическое сопротивление измерительной цепи ПТ должно быть не более 21 Ом.

Результаты испытаний занести в таблицу, выполненную по форме таблицы А.2.

6.3 Проверка сопротивления между электрически соединенными цепями

6.3.1 Измерить с помощью мультиметра цифрового FLuKE 289 электрическое сопротивление между корпусом соединителя X1 и плетенкой.

Электрическое сопротивление между электрически соединенными цепями, а также цепями заземления должно быть не более 0,1 Ом.

Результаты испытаний занести в таблицу, выполненную по форме таблицы А.3.

6.4 Проверка предела допускаемых отклонений ТЭДС от НСХ преобразования по ГОСТ Р 8.585

- 6.4.1 Собрать схему испытаний в соответствии с рисунком Б.1, используя ниже перечисленное оборудование:
 - калибратор температуры АТС 650 В;
 - два термометра сопротивления эталонных ЭТС-100;
 - измеритель регулятор температуры многоканальный прецизионный МИТ 8;
 - мультиметр Agilent 34401 A;
 - коробка из пенопласта с крышкой.
- 6.4.2 Поместить ПТ и термометр в калибратор температуры. Вход в установочное гнездо закрыть пробкой из огнеупорного материала.

Поместить в коробку из пенопласта вилку 2РМТ14КПН4Ш1A1B (X1) и присоединенный к ней термометр.

Примечание. У термометров рабочей зоной является участок в 10 см от торца. ПТ и X1 закреплять к термометрам в рабочих зонах.

- 6.4.3 Подготовить МИТ 8 к работе с чувствительными элементами из кабеля термопарного, учитывая, что:
- номинальная статическая характеристика преобразования ПТ в диапазоне от минус 196 до 600 °C должна соответствовать требованиям, установленным ГОСТ Р 8.585. Условное обозначение XK(L) или XA(K), класс допуска 2, 3;
- необходима операция по компенсации холодного спая для чувствительного элемента из термопарного кабеля.

Примечание. Работу с МИТ 8 вести руководствуясь указаниями описания на измеритель – регулятор температуры многоканальный прецизионный МИТ 8.

- 6.4.4 Установить в калибраторе температуру (600±5) °C.
- 6.4.5 Выдержать ПТ при установившейся температуре 3 мин.
- 6.4.6 Измерить:
- 1) температуру (Т_і) эталонным термометром (1) 7 канал МИТ 8;
- 2) ТЭДС ПТ (U_i) мультиметром Agilent 34401 A (мультметр);
- 3) температуру свободных концов, вилка X1 ($T_{i\,c.k.}$), эталонным термометром (2) 7 канал МИТ 8.
- 6.4.7 Цикл измерений осуществлять непрерывным отсчетом показаний: в прямой последовательности (от отсчета показаний термометров до отсчета показаний мультиметра), затем в обратной последовательности (от отсчета показаний мультиметра до отсчета показаний термометров) и т. д. до получения четырех отсчетов показаний термометров и мультиметра.

Интервалы времени между отсчетами показаний средств измерений во всем измерительном цикле должны быть примерно одинаковыми.

Отсчеты ТЭДС ТП (по мультиметру) проводить с точностью до второго знака после запятой. 6.4.8 Рассчитать средние значения:

- ТЭДС ПТ U_{ср.},

$$U_{cp.} = \sum (U_i)/4 \tag{1}$$

- фактической температуры образцового термометра $T_{\phi.cp.}$

$$T_{\text{d.cp.}} = \sum (T_i)/4 \tag{2}$$

- температуры свободных концов $T_{\Phi, cp, c, \kappa, ..}$

$$T_{\phi, cp. c.\kappa.} = \sum (T_{i c.\kappa})/4 \tag{3}$$

Результаты испытаний занести в таблицу, выполненную по форме таблицы А.4.

- 6.4.9 Среднеарифметические значения ТЭДС ПТ привести к значениям ТЭДС при температуре свободных концов, равной 0°С, для чего внести поправку на температуру свободных концов ПТ $T_{\phi.cp.\ c.k.}$:
- а) привести значение температуры свободных концов $T_{\phi,cp.\ c.\kappa.}$ к соответствующему ей ТЭДС ($U_{cp.c.\kappa.}$), т.е. найти в таблице ГОСТ Р 8.585 для термопары типа L или K (зависит от исполнения согласно таблицы 1) значение ТЭДС ($U_{cp.c.\kappa.}$), соответствующее $T_{\phi,cp.\ c.\kappa.}$, определенного по формуле 4;
- б) рассчитать среднеарифметические значения ТЭДС ПТ (U $_{\phi,cp.0^{\circ}C}$), приведенное к значениям ТЭДС при температуре свободных концов, равной 0°С, по формуле (4) . Значение ($U_{cp.c.к.}$) имеет знак «плюс».

$$U_{\phi,cp.0^{\circ}C} = U_{cp.} + U_{cp.c.\kappa.}$$
 (4)

Результаты испытаний занести в таблицу, выполненную по форме таблиц А.3.

6.4.10 Определить по таблицам ГОСТ Р 8.585 для термопары типа L или K (зависит от исполнения согласно таблицы 1) значения температуры $T_{\Gamma OCT}$ для среднеарифметического значения ТЭДС ПТ (U $_{\Phi,cp,0^{\circ}C}$), определенной по п.6.4.9.

Результаты испытаний занести в таблицу, выполненную по форме таблицы А.4.

6.4.11 Найти предел допускаемого отклонения ТЭДС от НСХ преобразования, выраженные в температурном эквиваленте - ΔT .

$$\Delta T = T_{\Gamma OCT} - T_{\phi, cp.} \tag{5}$$

Результаты испытаний занести в таблицу, выполненную по форме таблицы А.4.

Значение предела допускаемых отклонений ТЭДС от НСХ преобразования , выраженные в температурном эквиваленте не должно превышать предела допускаемых отклонений ТЭДС от НСХ преобразования по таблице 3.

Таблица 3 - Пределы допускаемых отклонений ТЭДС от НСХ преобразования по

ГОСТ Р 8.585, выраженные в температурном эквиваленте

HCX	Обозначе-	Класс	Диапазон измерений, °С	Пределы допускаемых отклоне-
преобра-	ние типа	до-		ний ТЭДС от НСХ преобразова-
зования	термопары	пуска		ния, выраженные в температур-
				ном эквиваленте, °С
(MIC)	т	2	от минус 200 до минус 100	$\pm (1,5+0,01 t)$
(XK)	L	3	св.минус 100 до 100	±2,5
(3/1/)	т	2	от минус 40 до 360	±2,5
(XK)	L	2	св.360 до 600	$\pm(0,7+0,005t)$
(37.4)	TC	3	от минус 200 до минус 167	$\pm (0,015 t)$
(XA)	К	3	св.минус 167до 40	±2,5
(37.4)	TC	2	от минус 40 до 333	±2,5
(XA)	К	2	св.333 до 600	$\pm (0,0075t)$

Примечание. t - абсолютное значение температуры, °C, без учета знака.

6.4.12 Повторить операции nn.6.4.5 - 6.4.11 для температур (200 ± 5), (400 ± 5) °C, устанавливаемых в калибраторе температуры.

Разобрать схему испытаний.

- $6.4.13~\Pi T$ выдержал проверку по определению предела допускаемых отклонений ТЭДС от HCX преобразования по ГОСТ Р 8.585, если значение ΔT для (600 ± 5) , (400 ± 5) , (200 ± 5) °C не превысило предела допускаемых отклонений ТЭДС от HCX преобразования по ГОСТ Р 8.585, выраженных в температурном эквиваленте для термопары типа K(L).
- 6.4.14 Собрать схему испытаний в соответствии с рисунком Б.2, используя ниже перечисленное оборудование:
 - два термометра сопротивления эталонных ЭТС-100;
 - измеритель регулятор температуры многоканальный прецизионный МИТ 8 (МИТ 8);
 - мультиметр Agilent 34401 A;
 - две коробки из пенопласта с крышкой.
- 6.4.15 Поместить вилку 2РМТ14КПН4Ш1А1В (X1) и привязанный к ней термометр в коробку из пенопласта с крышкой.

Собрать схему испытаний в соответствии с рисунком Б.3, установив ПТ и эталонный термометр в коробку из пенопласта.

- 6.4.16 Налить в коробку, с термометром и размещенным на нем ПТ, жидкий азот. Коробку закрыть крышкой.
- 6.4.17 Выдержать ПТ в коробке из пенопласта с жидким азотом в течение времени, необходимом для того, чтобы показания на дисплее МИТ 8 приблизились к значению температуры жидкого азота минус (196±1) °C. Показания изменялись только в третьем знаке после запятой.
 - 6.4.18 Повторить операции пп.6.4.5 6.4.11, 6.4.13.
- 6.4.19 Извлечь термометр с ПТ из коробки с жидким азотом. Выдержать в нормальных условиях 2 ч.
 - 6.4.20 Повторить операции пп. 6.4.17 6.4.19 еще три раза.
- $6.4.21~\Pi T$ выдержал проверку по определению предела допускаемых отклонений ТЭДС от HCX преобразования по ГОСТ Р 8.585, если значение ΔT для минус (196±1) °C не превысило предела допускаемых отклонений ТЭДС от HCX преобразования по ГОСТ Р 8.585, выраженных в температурном эквиваленте для термопары типа К (L).
- 6.4.22 Собрать схему испытаний в соответствии с рисунком Б.3, используя ниже перечисленное оборудование:
 - камера тепла и холода 100Т;
 - два термометра сопротивления эталонных ЭТС-100;
 - измеритель регулятор температуры многоканальный прецизионный МИТ 8;
 - мультиметр Agilent 34401 A;
 - две коробки из пенопласта с крышкой.
- 6.4.23 Установить ПТ и термометра сопротивления эталонныхЭТС-100 в камеру тепла и холода 100Т. В коробку из пенопласта поместить вилку 2РМТ14КПН4Ш1А1В (X1) и привязанный к ней термометр сопротивления эталонныхЭТС-100.

Установить в камере температуру минус (50±1) °C.

- 6.4.24 Выдержать ПТ в камере в течение времени, необходимом для того, чтобы показания на дисплее МИТ 8 приблизились к значению минус (50 ± 1) °C, температура изменялась в третьем знаке после запятой.
 - 6.4.25 Повторить операции пп. 6.4.5 6.4.11, 6.4.13.

Результаты испытаний занести в таблицу, выполненную по форме таблицы А.4.

 $6.4.26~\Pi T$ выдержал проверку по определению предела допускаемых отклонений ТЭДС от HCX преобразования по ГОСТ Р 8.585, если значение ΔT для минус (50 ± 1) °C не превысило предела допускаемых отклонений ТЭДС от HCX преобразования по ГОСТ Р 8.585, выраженных в температурном эквиваленте для термопары типа К (L).

7 Оформление результатов поверки

7.1 Результаты поверки оформить в соответствии с Приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Приложение А

Формы таблиц для регистрации результатов поверки

Таблица А.1 – Результаты проверки внешнего вида, маркировки, габаритных размеров.

Наименование проверок	Допустимое значение	Действительное значение
1 Внешний вид		
2 Маркировка		
3 Габаритные размеры, мм		

Таблица А.2 – Результаты проверки электрической сопротивления измерительной цепи

	Значение электрического сопротивления изоляции, Ом				
Цепи	по ТУ	Заводской номер			
	прямое подключение				
контакт 1 и контакт 2 вилки X1	обратное подключение				
	среднее, не более 21				

Таблица А.3 – Результаты проверки электрического сопротивления между электрически со-

единенными цепями

	Значение электрического сопротивления изоляции, Ом			
Цепи	по ТУ	Заводской номер		
корпус соединителя X1 и плетенка (СДАИ.405219.010Э3)	не более 0,1			

Таблица А.4 – Проверка предела допустимого отклонения от номинальной статической характеристики ПТ по ГОСТ Р 8.585

paki	Сробо										
ွ	Свободные концы ПТ			ПТ						ATTE-	ло- ГР
Измеряемая температура, °	измере термомо сопрот	Гемпература, измеренная ермометром сопротивления эталонным (2), °С		мВ	ТЭДС (при температуре свободных концов, равной 0°С),мВ	$\Gamma_{\rm FOCT}$ (соответствующее $U_{\Phi.cp.}$ °C	Температура, измеренная термометром сопротивления эталонным в калибраторе (1), °C		Фактическое отклонение ТЭДС от НСХ, выраженное в темпе- ратурном эквиваленте, °C	Предел допускаемых откло- нений ТЭДС от НСХ ±∆t ГОСТ Р 8.585, °C	
	Тіск.	Тф.ер.е.	U _{ср.с.к.}	Ui	U_{cp}	$U_{\Phi.cp.0}$ °C		<u> </u>	Тф.ср.	$\Delta T = (T_{\Gamma OCT} - T_{\phi.cp.})$	ΔΤro
(9007)											±3,7
(400±5)											±2,7
(200±5)											±2,5
минус (196±1)											±2,5
минус (50±1)							-				±3,46

Приложение Б

Схемы испытаний

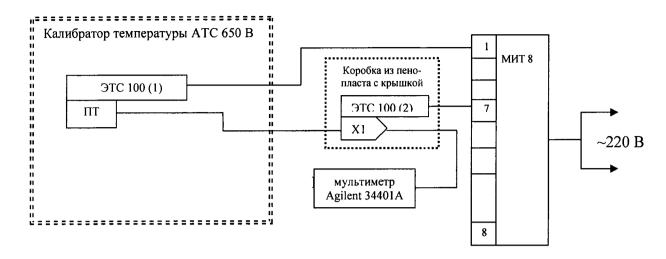


Рисунок Б.1 - Схема испытаний по проверке допускаемых отклонений ТЭДС от НСХ преобразования по ГОСТ Р 8.585

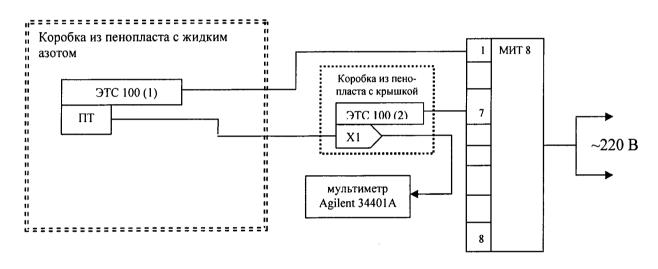


Рисунок Б.2 - Схема испытаний по проверке допускаемых отклонений ТЭДС от НСХ преобразования по ГОСТ Р 8.585

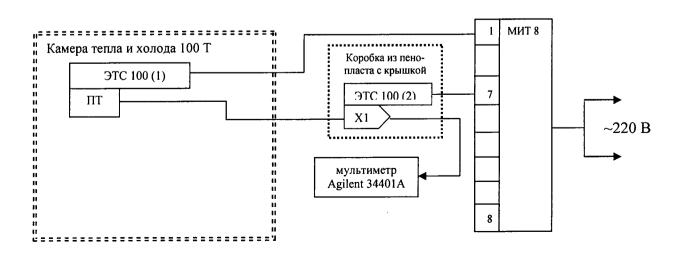


Рисунок Б.3 - Схема испытаний по проверке допускаемых отклонений ТЭДС от НСХ преобразования по ГОСТ Р 8.585