УТВЕРЖДАЮ

Заместитель генерального директора

СПЕКТРОМЕТРЫ ДФС-100

Методика поверки

436-136-2017МП

Настоящая методика поверки распространяется на спектрометры ДФС-100 модификаций ДФС-100Н и ДФС-100М (в дальнейшем – спектрометры), предназначенные для измерения аналитического сигнала, пропорционального интенсивности спектральных линий оптического излучения и последующего определения массовых долей примесей и легирующих элементов в металлах, сплавах и других материалах, и устанавливает методы их первичной поверки при выпуске из производства, после ремонта и периодической поверки в процессе эксплуатации.

Интервал между поверками – 1 год.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер	Проведение операции при	
	пункта методики поверки	первичной поверке	периодической поверке
1. Внешний осмотр	7.1	Да	Да
2. Проверка соответствия ПО	7.2	Да	Да
3. Опробование	7.3	Да	Да
4. Определение метрологических характеристик	7.4	,	
4.1 Определение относительной погрешности из- мерений	7.4.1	Да	Да
4.2 Определение относительного СКО случайной составляющей погрешности измерений	7.4.2	Да	Да

1.2 При получении отрицательного результата при проведении какой-либо из операций поверка прекращается.

2. СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.

Таблица 2

Номер пункта	Наименование и тип основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требо-
	вания, и (или) метрологические и основные характеристики средства поверки
7.4	Психрометр аспирационный М34, ТУ 25-2607.054-85, температура от минус 25 до 50 °C, влажность от 10 до 100 % при температуре от 5 до 40 °C
	Барометр-анероид БАММ-1, ТУ 25-04-1513-79, от 80 до 106 кПа, $\Pi\Gamma \pm 0.2$ кПа
	Стандартные образцы состава металлов и сплавов ГСО 8383-2003

- 2.2 Допускается применение других стандартных образцов состава металлов и сплавов (в соответствие с градуировкой), обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.
- 2.3 Перечисленное оборудование могут быть заменены другими, обеспечивающими требуемую точность измерений.

3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 3.1 Поверку спектрометров имеет право осуществить лицо, имеющее высшее образование, практический опыт работы с приборами данного класса и аттестованное в качестве поверителя.
- 3.2 Перед началом поверки поверитель должен ознакомиться с Руководство по эксплуатации спектрометров и программным документом «Программа WCcd. Руководство оператора».

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны соблюдаться требования безопасности, изложенные:
- в требованиях техники безопасности для защиты персонала от поражения электрическим током согласно ГОСТ 12.2.007.0-75;
 - в Руководстве по эксплуатации спектрометров;
 - в эксплутационных документах средств измерений, используемых при поверке.
- 4.2 При обслуживании спектрометров должны соблюдаться «Правила эксплуатации электроустановок», «Правила технической эксплуатации электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителей», утвержденные Госэнергонадзором России.
- 4.3 При работе с баллонами, содержащими аргон под давлением, необходимо соблюдать требования техники безопасности согласно «Правилам устройства и безопасной эксплуатации сосудов, работающих под давлением», утвержденным Госгортехнадзором России.
- 4.4 В помещении, в котором производится работа со спектрометром, должен быть обеспечен вывод выходящего из спектрометра аргона.
- 4.5 Источником повышенной опасности поражения электрическим током является штатив, поэтому категорически запрещается запускать генератор, не установив пробу или стандартный образец на столик штатива.
- 4.6 Переустановку пробы можно производить после окончания экспозиции, убедившись в отсутствии разряда.
- 4.7 При работе со спектрометром следует избегать попадания излучения, даже отраженного в кожухе штатива, в глаза.
- 4.8 Во избежание поражения оператора электрическим током и выхода спектрометра из строя запрещается использовать для подключения спектрометра к сети розетку без контактов заземления.

5. УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха

 (20 ± 5) °C;

- относительная влажность воздуха

до 80 %;

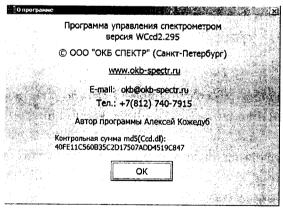
- атмосферное давление

от 84,0 до 106,7 кПа.

6. ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки следует выполнить следующие подготовительные работы:

а) подготовить спектрометры к работе в соответствии с требованиями Руководства по эксплуатации;


- б) подготовить к работе средства поверки в соответствии с требованиями эксплуатационной документации на них;
- в) выдержать спектрометры в помещении, в котором проводится поверка, в течение не менее 6 ч;
- г) выдержать баллоны с аргоном в помещении, в котором проводится поверка, не менее 24 часов;
 - д) включить и прогреть спектрометры не менее 30 минут;
 - е) проверить наличие свидетельств о поверке и паспортов на средства измерения;
- ж) настроить спектрометр на заказанную потребителем аналитическую программу и отградуировать по стандартным образцам состава, используемого при эксплуатации, согласно «Руководству по эксплуатации».

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено отсутствие на наружных поверхностях спектрометров повреждений и дефектов, влияющих на их работу.

- 7.2 Проверка соответствия ПО
- 7.2.1 Для проверки соответствия ПО необходимо запустить программу при помощи файла WCcd.exe, установленного на рабочем столе Windows, либо из меню «Пуск».
 - 7.2.2 В строке меню программы выбрать «Справка», затем «О программе».
 - 7.2.3 На экране появится изображение с идентификационными данными
- 7.2.4 Результат подтверждения соответствия программного обеспечения считается положительным, если идентификационное наименование и контрольная сумма соответствуют приведенным на рисунке ниже.

7.3 Опробование

- 7.3.1 Подать сетевое питание на спектрометр и его составляющие части при помощи клавиш, расположенных на панели управления.
- 7.3.2 Результат считать положительным, если загорелась световая индикация с надписями: «Сеть».
 - 7.4 Определение метрологических характеристик
 - 7.4.1 Определение относительной погрешности измерений
- 7.4.1.1 Выбрать 3 образца с массовыми долями трех пяти контролируемых элементов в начале, в конце и в середине диапазона измерений массовых долей данных элементов.
- 7.4.1.2 Произвести по пять измерений массовых долей элементов в выбранных образцах.
- 7.4.1.3 Вычислить среднее арифметическое значение результатов измерений по каждому элементу и каждой серии измерений по формуле (1).

$$\overline{C} = \frac{\sum_{i=1}^{3} C_i}{5}, \%$$
 (1)

где: C_i - результат i-того измерения в серии из 5 параллельных измерений, %.

7.4.1.4 Вычислить относительную погрешность измерений по каждому элементу и каждой серии измерений по формуле (2).

$$\delta = \frac{\overline{C} - C_n}{C_n} * 100, \%$$
 (2)

где: $C_{\scriptscriptstyle n}$ - паспортное значение массовой доли контрольного элемента, %.

7.4.1.5 Результаты поверки считать положительными, если относительные погрешности измерений для каждого контрольного элемента находятся в пределах, указанных в таблице 3.

Таблица 3

Диапазон массовых долей, %	Пределы допускаемой относительной погрешности, %
0,01 - 0,05	±40
0,05-0,1	±25
0,1 – 1	±20
1 – 30	±10

- 7.4.2 Определение относительного СКО случайной составляющей погрешности измерений
- 7.4.2.1 По результатам выполнения п.7.4.1 вычислить относительное среднее квадратическое отклонение результатов измерений по каждому элементу и в каждой серии по формуле (3).

$$S = \frac{100}{\overline{C}} \sqrt{\frac{\sum_{i=1}^{5} (C_{i} - \overline{C})^{2}}{4}}, \%$$
 (3)

7.4.2.2 Результаты поверки считать положительными, если относительные средние квадратические отклонения результатов измерений не превышают значений, указанных в таблице 4.

Таблица 4

Диапазон массовых долей, %	OCKO, %
0,01 - 0,05	15
0.05 - 0.1	10
0,1 – 1	7
1 – 30	5

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 В процессе проведения поверки оформляется протокол.
- 8.2 Положительные результаты первичной поверки оформляются нанесением поверительного клейма в разделе «Свидетельство о приемке» Руководства по эксплуатации.
- 8.3 Положительные результаты периодической поверки спектрометра ДФС-100Н оформляется свидетельством о поверке установленной формы и нанесением знака поверки в виде наклейки на лицевую панель.

- 8.4 Положительные результаты периодической поверки спектрометра ДФС-100М оформляется свидетельством о поверке установленной формы и нанесением знака поверки в виде наклейки на лицевую панель блока управления.
 - 8.5 Отрицательные результаты поверки оформляют извещением о непригодности.

ПРИЛОЖЕНИЕ A 1 (рекомендуемое)

Протокол поверки спектрометра ДФС-100

мод.
Предприятие-изготовитель:
Дата выпуска, зав.№:
Результаты поверки
1. Внешний осмотр
3. Опробование
 Определение метрологических характеристик: Определение предела допускаемой относительной погрешности измерения
4.2 Определение относительного СКО случайной составляющей погрешности измерения
Вывод:
Подпись поверителя: МП