Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт метрологической службы (ФГУП «ВНИИМС»)

Системы автоматизированные учета потребления/поставки воды (АСУПВ). Методика поверки. МП 201-055-2017

СОДЕРЖАНИЕ

ОБЩИЕ ПОЛОЖЕНИЯ	
1 ОПЕРАЦИИ ПОВЕРКИ	4
2 СРЕДСТВА ПОВЕРКИ	4
3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	5
4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
5 УСЛОВИЯ ПОВЕРКИ	5
6 ПОДГОТОВКА К ПОВЕРКЕ	6
7 ПРОВЕДЕНИЕ ПОВЕРКИ	6
7.1 Внешний осмотр	6
7.2 Проверка документации	7
7.3 Опробование	7
7.4 Проверка погрешности ВИК	7
8 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ.	8
9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	Ç

ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика устанавливает требования к проведению первичной и периодической поверок систем автоматизированных учета потребления/поставки воды (АСУПВ) (далее - АСУПВ) изготавливаемых ООО «АКСИТЕХ», г. Москва и АО «Мосводоканал» г. Москва.

Системы автоматизированные учета потребления/поставки воды (АСУПВ) предназначены для измерений давления, объема и расхода холодной и горячей воды, а также автоматического сбора, накопления, обработки, хранения, отображения и передачи полученной информации в системы верхнего уровня.

АСУПВ выполняют следующие задачи:

- периодический (1 раз в сутки) и/или по запросу автоматический сбор и передачу привязанных к единому календарному времени результатов измерений с заданной дискретностью учета (120 минут);
 - интеграцию различных систем в единое информационное пространство;
- обработку и подготовку данных потребления/поставки воды конечному потребителю;
 - организацию контроля потерь (несанкционированное использование и утечки);
- организацию электронного инвентарного учета оборудования водомерного узла (далее ВУ) и отдельных компонентов;
- организацию потока данных в сторонние системы для последующей обработки и анализа информации;
- диагностику и мониторинг функционирования технических и программных средств АСУПВ;
 - конфигурирование и настройку параметров АСУПВ.

АСУПВ обеспечивают измерения, регистрацию и передачу данных на верхний уровень измерительной информации, производит анализ полученных данных (вычисление балансов), осуществляется отображение информации на APM пользователя с возможностью печати отчетов, предоставляет информацию о контроле линий связи с контроллерами телеметрии и счетчиками энергоресурсов, обеспечивает защиту информации о потреблении энергоресурсов от несанкционированного доступа.

АСУПВ относятся к проектно-компонуемым изделиям, виды и количество измерительных каналов (ИК) определяется конкретным проектом. Перечень ИК приведен в технической документации на АСУПВ.

ИК систем состоят из следующих основных компонентов:

- первичных измерительных преобразователей (ПИП): датчиков давления, счетчиков холодного и горячего водоснабжения, теплосчетчиков;
- вторичной части измерительных каналов (ВИК) состоящей из контроллеров автономных модульных КАМ200.

Поверку проводят расчетно-экспериментальным методом: условно делят канал на первичную (датчик/датчики) и вторичную (от «точки» подключения датчика/датчиков до места отображения информации о значении измеряемого физического параметра) части.

ПИП, используемые в АСУПВ должны быть внесены в Федеральный информационный фонд по обеспечению единства измерений и иметь методики поверки, по которым они могут быть поверены в установленном порядке.

Поверку вторичной («электрической») части ИК (далее – ВИК) проводят в рабочих условиях применения.

Результаты поверки АСУПВ считаются положительными, если:

- первичные измерительные преобразователи имеют действующее свидетельство о поверке (либо отметку о поверке в паспорте);
- погрешность вторичной части ИК не превышает значений, рассчитанных для рабочих условий вторичной части АСУПВ.

Интервал между поверками АСУПВ -2 года, при этом первичные измерительные преобразователи из состава АСУПВ должны поверяться в соответствии с их интервалами между поверками.

Допускается проведение поверки отдельных измерительных каналов из состава АСУПВ в соответствии с заявлением владельца АСУПВ с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Раздел	Обязательность проведения при	
Наименование операции	методики поверки	первичной поверке	периодич. поверке
1. Внешний осмотр	7.1	Да	Да
2. Проверка документов	7.2	Да	Да
3. Опробование	7.3	Да	Да
3. Проверка погрешности ВИК	7.4	Да	Да
4. Подтверждение соответствия программного обеспечения	8	Да	Да
5. Оформление результатов поверки	9	Да	Да

2 СРЕДСТВА ПОВЕРКИ

- 2.1 Поверка первичных измерительных преобразователей проводится по НД и технической документации на них.
- 2.2 Погрешность эталона не должна быть более 1/5 предела контролируемого значения погрешности. Допускается использовать эталоны, имеющие предел допускаемого значения погрешности не более 1/3 предела контролируемого значения погрешности, в этом случае должен быть введен контрольный допуск, равный 0,8 (см. МИ 187-86, МИ 188-86).

При проведении поверки ИК в рабочих условиях следует учитывать дополнительные погрешности. Погрешность эталонного средства измерений (далее - эталон) в рабочих условиях применения рассчитывается аналогично п.6.3. Используемые для проведения экспериментальной проверки погрешности ИК эталоны должны быть пригодны к эксплуатации в условиях проведения поверки.

- 2.3 Дискретность регулирования сигналов от источников тока и напряжения, подаваемых на входы ВИК, не должна превышать 0,3 номинальной ступени квантования испытываемого канала.
 - 2.4 В таблице 2 приведены рекомендуемые эталоны.

Таблица 2 – Рекомендуемые эталоны

№ п/п	Наименование
1	Калибратор многофункциональный MC5-R per. № 22237-08
2	Термогигрометр электронный «Center» мод. 310 рег. № 22129-09
3	Барометр-анероид БАММ-1 рег. № 5738-76
1	Примечание - Допускается применение других эталонов с метрологическими характеристиками, не ем у эталонов, перечисленных выше.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке АСУПВ допускают лиц, освоивших работу с АСУПВ и используемыми эталонами, изучивших настоящую рекомендацию, аттестованных в установленном порядке.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки ИК АСУПВ соблюдают требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», ГОСТ 12.2.007.0-75, ГОСТ Р 12.1.019-2009, ГОСТ 12.2.007.0-75 и требования безопасности указанные в технической документации на АСУПВ, на компоненты АСУПВ, применяемые эталоны и вспомогательное оборудование.

5 УСЛОВИЯ ПОВЕРКИ

5.1 Условия поверки определяются условиями работы средств измерений из состава ВИК АСУПВ и являются необходимой информацией для расчета предела допускаемых значений погрешности каждого ВИК в условиях поверки.

Средства измерений, применяемые при поверке, должны быть поверены и иметь действующие поверительные клейма или свидетельства о поверке.

5.2 Рабочие условия применения компонентов АСУПВ.

Для первичных измерительных преобразователей условия применения определяются их технической документацией.

Для модулей процессорных контроллеров автономных модульных КАМ200:

- температура окружающего воздуха:

от минус 40 до +50 °C;

- относительная влажность

до 80 % при 25 °C без конденсации влаги

Для АРМ оператора:

- температура окружающего воздуха:

+ 10 до +35 °C;

- относительная влажность

от 30 до 80 %;

- атмосферное давление

от 84,0 до 106,7 кПа;

- напряжение питания от сети переменного тока напряжением от 187 до 242 В;
- частота (50±1) Гц.
- 5.3 Обследование условий работы ВИК АСУПВ и их измерительных компонентов.

При первичной (периодической) поверке проводится обследование климатических условий и сети питания в помещениях, где размещены измерительные компоненты ВИК АСУПВ.

Оценивают предел допускаемых значений погрешности канала в этих условиях в соответствии с указаниями п.6.3.

5.4 Обследование условий работы ИК АСУПВ и их измерительных компонентов согласно п.5.3 проводится непосредственно перед проведением экспериментальной проверки погрешности ИК. Стабильность окружающих условий на период поверки контролируется.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед началом поверки следует изучить руководство по эксплуатации АСУПВ и входящих в состав ИК измерительных компонентов, эталонов и других технических средств, используемых при поверке, настоящую методику, правила техники безопасности и строго их соблюдать.
- 6.2 Перед экспериментальной проверкой погрешности ВИК все измерительные компоненты из состава ВИК, используемые эталоны и вспомогательные технические средства должны быть подготовлены к работе в соответствии с указаниями эксплуатационной документации на эти средства измерений.

- 6.3 Рассчитывают пределы допускаемой основной погрешности (доверительные границы) каждого ВИК по результатам обследования условий работы измерительных компонентов ВИК по п.5.3, для этого:
- 6.3.1 Приводят форму представления основных и дополнительных погрешностей измерительных компонентов к единому виду (приведенная, относительная, абсолютная, по входу или выходу ИК).
- 6.3.2 Для каждого измерительного компонента из состава ВИК рассчитывают пределы допускаемой погрешности в реальных условиях поверки (см. РД 50-453-84) путем учета основной и дополнительных погрешностей от влияющих факторов на момент поверки, оцененными в соответствии с п.5.3.

Пределы допускаемых значений погрешности Δ_{cu} измерительного компонента в реальных условиях поверки вычисляют по формуле:

$$\Delta_{cu} = \Delta_o + \sum_{i=1...n} \Delta_i,$$

где Δ_o - пределы допускаемых значений основной погрешности измерительного компонента;

 Δ_i - пределы допускаемой дополнительной погрешности измерительного компонента от i-го влияющего фактора в реальных условиях поверки при общем числе n учитываемых влияющих факторов.

Для ИК, содержащих два измерительных компонента, рассчитывают пределы допускаемой основной погрешности ИК, по формулам:

$$\delta_{\text{ИК}} = \pm \left(\delta_{\text{дат.}} + \delta_{\text{контр.}} \right)$$
 — для ИК расхода,

где $\delta_{\text{дат.}}$ - пределы допускаемой основной относительной погрешности датчика, %;

 $\delta_{\text{контр.}}$ — пределы допускаемой основной относительной погрешности модуля контроллера, %;

$$\gamma_{\rm HK} = \pm (\gamma_1 + \gamma_2)$$
 — для ИК давления,

где γ_1 – пределы допускаемой основной приведенной погрешности датчика, %;

 γ_2 – пределы допускаемой основной приведенной погрешности модуля контроллера, %.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

Проводят осмотр мест установки компонентов ИК АСУПВ, проверяют отсутствие механических повреждений, обугливания изоляции. В случае использования датчиков, подвергавшихся поверке, проверяют наличие пломб, оттисков поверительных клейм и необходимых надписей на наружных панелях этих компонентов комплексов.

7.2 Проверка документации

Проверяют наличие следующих документов:

- перечня ИК, входящих в состав АСУПВ, подлежащих поверке, с указанием заводских номеров комплектующих их измерительных компонентов;
- эксплуатационной документация на измерительные компоненты в составе ИК и при наличии, на АСУПВ в целом;
 - свидетельств предыдущей поверки;

- протоколов измерений фактических значений, и границ их изменения, температуры, влажности воздуха, напряжения питания в помещениях, в которых размещены измерительные компоненты каналов, параметры вибрации вблизи мест их установки, напряженности магнитного поля;
- технической документации и свидетельств о поверке эталонов, используемых при поверке ВИК;
 - свидетельств о поверке первичных измерительных преобразователей (датчиков).

7.3 Опробование

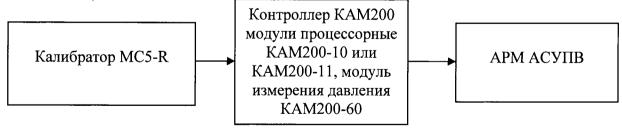
В соответствии с указаниями эксплуатационной документации на АСУПВ и ее компоненты, выполняют, наряду с общими тестовыми процедурами, тестовый контроль контроллеров из состава АСУПВ и общего программного обеспечения АСУПВ, в том числе.

7.4 Проверка погрешности ВИК

Проверка погрешности ВИК ИК давления.

- 7.4.1 Отсоединить линию связи от датчиков к контроллеру. Подключить калибратор ко входу вторичной части ИК в зависимости от ИК (Схема 1).
- 7.4.2 Подают сигнал на вход вторичной части ИК. Проводят поверку каждого ИК в пяти точках диапазона измерения (0 (10), 25, 50, 75, 90 (100) %).
- 7.4.3 Значения входных сигналов (Yвх) и значения выходных сигналов (Nвых), отображенных на APM АСУПВ, занести в протокол поверки по форме таблицы указанной в приложении A.
- 7.4.4 Вычисляют приведенную погрешность вторичной части ИК, выраженную в %:

$$\gamma_{\text{buk}} = \frac{N_{\text{bux}} - N_0}{N_{\text{hopm}}} \cdot 100,\% \tag{1}$$


где

N_{вых} – выходное значение сигнала;

 N_0 – значение измеряемой величины, установленное на эталоне;

 $N_{\text{норм}}$ — нормирующее значение измеряемой величины (верхний предел диапазона измерений).

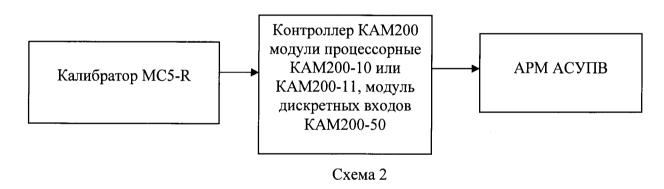
7.4.5 Погрешность вторичной части ИК не должна превышать значений, указанных в Таблице Б.1.

Схема 1

Проверка погрешности ВИК ИК объемного расхода воды, объема.

- 7.4.6 Для проверки погрешности ВИК расхода, реализующих преобразования импульсов в измеренные значения расхода необходимо:
 - собрать схему устройства приема импульсных сигналов (Схема 2);
 - провести сброс данных счетчиков в ПО контроллера КАМ200;
- установить (проверить соответствие) в ПО системы коэффициент пересчета импульсов (A) (передаточное число счетчиков);
- установить на задатчике импульсов пачку импульсов (N) с количеством не менее 3000;

- запустить задатчик импульсов, по окончании процедуры произвести считывание результатов счета на выходе контроллера KAM200;
- определить относительную погрешность счета импульсов от счетчиков по формуле:


$$\delta_{_{\text{B MK}}} = \frac{(A \cdot N) - A_1}{A_1} \cdot 100,\% \tag{2}$$

где A - передаточное число счетчика, занесенное в ΠO системы оператором при настройке системы;

N – количество импульсов в пачке импульсов, подаваемой с задатчика на вход испытываемого ИК, и контролируемое частотомером;

 A_1 – показание расхода, полученное контроллером KAM200.

- 7.4.8 Значения входных сигналов (Xi) и значения выходных сигналов (Ni), отображенных на APM, занести в протокол поверки по форме указанной в приложении A.
- 7.4.9 Результаты поверки считаются положительными, если для каждой проверяемой точки выполняется неравенство $|\delta| \le |\delta_{\text{пр.}}|$, где $\delta_{\text{пр.}}$ пределы допускаемой относительной погрешности ВИК расхода в фактических условиях поверки. Погрешность вторичной части ИК не должна превышать значений, указанных в Таблице Б.1.

Примечание: для ВИК с двумя компонентами пределы допускаемой погрешности рассчитываются по следующей формуле (для каждой проверяемой точки):

$$\gamma_{BUK} = \pm (\gamma_1 + \gamma_2) \tag{3}$$

где γ_1 - пределы допускаемой погрешности 1-го компонента ВИК, %, γ_2 - пределы допускаемой погрешности 2-го компонента ВИК, %.

8 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 8.1 Проводится проверка соответствия заявленных идентификационных данных программного обеспечения указанных в описании типа на с АСУПВ.
- 8.2 ПО считается подтвержденным, если идентификационные данные программного обеспечения не противоречат приведенным в описании типа на АСУПВ.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 При положительных результатах поверки оформляют свидетельство о поверке АСУ ТП согласно «Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» утвержденному приказом Минпромторга России № 1815 от 02 июля 2015 г. Знак поверки наносится на свидетельство о поверке.
- 9.2 При отрицательных результатах поверки свидетельство о предыдущей поверке аннулируют и и в части ИК не прошедших поверку выдают извещение о непригодности согласно «Порядка проведения поверки средств измерений, требования к знаку поверки и

содержанию свидетельства о поверке», утвержденному приказом Минпромторга России № 1815 от 02 июля 2015 г.

Разработали:

Начальник отд. 201

мрания (т. М. Каширкина Лапин А.В.

Инженер 2 кат. отд. 201