ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В РЕСПУБЛИКЕ ТАТАРСТАН» (ФБУ «ЦСМ Татарстан»)

УТВЕРЖДАЮ:

Заместитель директора

«МООТНОВ ИНСМ Татарстан»

Г. М. Аблатыпов

2016 г.

Система автоматизированная

информационно-измерительная

коммерческого учета электрической энергии (мощности) АИИС КУЭ ОАО «Татэнергосбыт» седьмая очередь

Методика поверки

ТЭС 055.215.00.07.00 МП

r.p 63245-16

Содержание

OBL	ЦЕЕ ПОЛОЖЕНИЕ	3
1.	ОПЕРАЦИИ ПОВЕРКИ	3
2.	СРЕДСТВА ПОВЕРКИ	4
3.	ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	4
4.	ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
5.	УСЛОВИЯ ПОВЕРКИ	5
6.	ПОДГОТОВКА К ПОВЕРКЕ	5
7.	ПРОВЕДЕНИЕ ПОВЕРКИ	6
8.	МЕТОДИКА ПРОВЕРКИ ИДЕНТИФИКАЦИИ ПО	9
9.	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	13
ПРИ	ЛОЖЕНИЯ	14

ОБЩЕЕ ПОЛОЖЕНИЕ

Настоящая методика поверки распространяется на систему автоматизированную информационно-измерительная коммерческого учета электрической энергии (мощности) АИИС КУЭ ОАО «Татэнергосбыт» седьмая очередь и устанавливает порядок проведения первичной и периодической поверок ее информационно-измерительных комплексов (далее по тексту - ИИК).

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) АИИС КУЭ ОАО «Татэнергосбыт» седьмая очередь (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, для осуществления эффективного автоматизированного коммерческого учета и контроля потребления электроэнергии и мощности по всем расчетным точкам учета, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в центры сбора и обработки информации в ОАО «АТС», и прочим заинтересованным организациям в рамках согласованного регламента.

Замену отдельных технических компонентов допускается проводить без дополнительной поверки ИИК, если устанавливаемые компоненты поверены и их метрологические характеристики (далее - МХ) совпадают с заменяемыми.

В состав ИИК системы входят измерительные компоненты, приведенные в Приложении.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 - Операции поверки

Наименование операции	Номер пункта	Обязательность проведения операции					
	НД по поверке	первичной поверке	периодичес кой				
1. Подготовка к поверке	6	Да	Да				
2. Внешний осмотр	7.1	Да	Да				
3. Поверка измерительных компонентов АИИС КУЭ	7.2	Да	Да				
4. Проверка счетчиков электрической энергии	7.3	Да	Да				
5. Проверка УСПД	7.4	Да	Да				
6. Проверка функционирования сервера АИИС КУЭ	7.5	Да	Да				
7. Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения	7.6	Да	Да				
8. Проверка нагрузки вторичных цепей измерительных трансформаторов тока	7.7	Да	Да				
9. Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком	7.8	Да	Да				
10. Проверка погрешности системного времени	7.9	Да	Да				
11. Проверка отсутствия ошибок информационного обмена	7.10	Да	Да				
12. Идентификация ПО	8	Да	Да				
13. Оформление результатов поверки	9	Да	Да				

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в таблице 2.

Таблица 2 - Средства измерений

No	Наименование	Номер пункта
п/п		НД по поверке
1	Термометр, диапазон измерений от минус 40 до плюс 50 °C, пределы допускаемой погрешности ±1 °C	6
2	Вольтамперфазометр, диапазон измерений от 0 до 10 А, предел допускаемой относительной погрешности ±1,5 %	6
3	Средства измерений вторичной нагрузки ТТ в соответствии с утвержденным документом «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации»	7.8
4	Средства измерений вторичной нагрузки ТН в соответствии с утвержденным документом «Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации»	7.7
5	Средства измерений падения напряжения в линии соединении счетчика с ТН в соответствии с утвержденным документом «Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации»	7.9
6	Переносной компьютер с ПО «Конфигуратор СЭТ-4ТМ», для работы со счетчиками системы	7.3
7	Радиочасы «МИР РЧ-01»	7.10

Примечание – Допускается применение других основных и вспомогательных средств поверки с метрологическими характеристиками, обеспечивающими требуемые точности измерений.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 3.1 Поверку АИИС КУЭ осуществляют аккредитованные в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации на проведение поверки средств измерений юридические лица и индивидуальные предприниматели изучившие настоящую методику поверки и руководство по эксплуатации на АИИС КУЭ, имеющие стаж работы по данному виду измерений не менее 1 гола.
- 3.2 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже III.
- 3.3 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом.

Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV.

3.4 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0, ГОСТ 12.2.007.3, «Правилами технической эксплуатации электрических станций и сетей РФ», «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок» РД 153-34.0-03.150, а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.
- 4.2 Эталонные средства измерений, вспомогательные средства поверки и оборудование должны соответствовать требованиям ГОСТ 12.2.003, ГОСТ 12.2.007.3

5 УСЛОВИЯ ПОВЕРКИ

Условия поверки АИИС КУЭ должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Для проведения поверки представляют следующую документацию:
- руководство по эксплуатации АИИС КУЭ;
- описание типа АИИС КУЭ;
- свидетельства о поверке измерительных компонентов, входящих в ИК, и свидетельство о предыдущей поверке системы (при периодической и внеочередной поверке);
 - паспорта-протоколы на ИИК;
- рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за межповерочный интервал (только при периодической поверке).
 - 6.2 Перед проведением поверки выполняют следующие подготовительные работы:
- проводят организационно-технические мероприятия по доступу поверителей и персонала энергообъектов к местам установки измерительных трансформаторов, счетчиков электроэнергии, УСПД; по размещению эталонов, отключению в необходимых случаях поверяемых средств измерений от штатной схемы;
- проводят организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;
- средства поверки выдерживают в условиях и в течение времени, установленных в нормативных документах на средства поверки;
- все средства измерений, которые подлежат заземлению, должны быть надежно заземлены, подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

- 7.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений измерительных компонентов, наличие поверительных пломб и клейм.
- 7.1.2 Проверяют размещение измерительных компонентов, правильность схем подключения трансформаторов тока и напряжения к счетчикам электрической энергии; правильность прокладки проводных линий по проектной документации на АИИС КУЭ.
- 7.1.3 Проверяют соответствие типов и заводских номеров фактически использованных измерительных компонентов типам и заводским номерам, указанным в формуляре АИИС КУЭ.
- 7.1.4 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

7.2 Поверка измерительных компонентов АИИС КУЭ

Проверяют наличие свидетельств о поверке и срок их действия для всех измерительных компонентов: измерительных трансформаторов тока и напряжения, счетчиков электрической энергии, УСПД. При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств, срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после поверки этих измерительных компонентов.

7.3 Проверка счетчиков электрической энергии

- 7.3.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на счетчике и испытательной коробке. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения счетчика к цепям тока и напряжения, в частности, правильность чередования фаз. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения счетчиков к цепям тока и напряжения (соответствие схем подключения схемам, приведенным в паспорте на счетчик). Проверяют последовательность чередования фаз с помощью вольтамперфазометра. При проверке последовательности чередования фаз действуют в соответствии с указаниями, изложенными в руководстве по его эксплуатации.
- 7.3.2 Проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.
- 7.3.3 Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Преобразователь подключают к любому последовательному порту переносного компьютера. Опрашивают счетчик по установленному соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком.
- 7.3.4 Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптопорт.

7.4 Проверка УСПД

- 7.4.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на УСПД. При отсутствии или нарушении пломб проверяют правильность подсоединения УСПД.
- 7.4.2 Проверяют правильность функционирования УСПД в соответствии с его эксплуатационной документацией с помощью тестового программного обеспечения. Проверка считается успешной, если все подсоединенные к УСПД счетчики опрошены и нет сообщений об ошибках.
 - 7.4.3 Проверяют программную защиту УСПД от несанкционированного доступа.

7.4.4 Проверяют правильность значений коэффициентов трансформации измерительных трансформаторов, хранящихся в памяти УСПД.

7.5 Проверка функционирования сервера АИИС КУЭ (АРМ или сервера)

- 7.5.1 Проводят опрос текущих показаний всех счетчиков электроэнергии.
- 7.5.2 Проверяют глубину хранения измерительной информации в сервере АИИС КУЭ.
- 7.5.3 Проверяют защиту программного обеспечения на сервере АИИС КУЭ от несанкционированного доступа. Для этого запускают на выполнение программу сбора данных и в поле «пароль» вводят неправильный код. Проверку считают успешной, если при вводе неправильного пароля программа не разрешает продолжать работу.
- 7.5.4 Проверяют работу аппаратных ключей. Выключают сервер и снимают аппаратную защиту (отсоединяют ключ от порта сервера). Включают сервер, загружают операционную систему и запускают программу. Проверку считают успешной, если получено сообщение об отсутствии «ключа защиты».

7.6 Проверка нагрузки вторичных цепей трансформаторов напряжения

- 7.6.1 Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи ТН со счетчиком. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения первичных и вторичных обмоток ТН. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения первичных и вторичных обмоток ТН.
- $7.6.2~{\rm При}$ проверке мощности нагрузки вторичных цепей ТН необходимо убедиться, что отклонение вторичного напряжения при нагруженной вторичной обмотке составляет не более $\pm 10~{\rm \%}$ от UHOM.

Измеряют мощность нагрузки TH, которая должна находиться в диапазоне $(0,25-1,0)\cdot S_{HOM}$.

Измерение мощности нагрузки вторичных цепей ТН проводят в соответствии с аттестованной в установленном порядке методикой измерений.

Примечания

- 1 Допускается измерение мощности нагрузки вторичных цепей ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТН.
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам измерительных трансформаторов.

7.7 Проверка нагрузки вторичных цепей трансформаторов тока

- 7.7.1 Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения вторичных обмоток ТТ. При отсутствии таких документов проверяют правильность подключения вторичных обмоток ТТ.
- 7.7.2 Измеряют мощность нагрузки вторичных цепей ТТ, которая должна находиться в диапазоне (0,25-1,0) SHOM- Для трансформаторов с номинальными вторичными нагрузками 1; 2; 2,5; 3; 5 и 10 ВА нижний предел вторичных нагрузок 0,8; 1,25; 1,5; 1,75; 3,75 и 3,75 В-А соответственно.

Измерение тока и вторичной нагрузки ТТ проводят в соответствии с аттестованной в установленном порядке методикой измерений.

Примечания

- 1 Допускается измерение мощности нагрузки вторичных цепей ТТ не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный ИИК в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТТ.
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам ТТ.

7.8 Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком

Измеряют падение напряжения и_л в проводной линии связи для каждой фазы по утвержденному документу «Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации». Падение напряжения не должно превышать 0,25 % от номинального значения на вторичной обмотке ТН.

Примечания

- 1 Допускается измерение падения напряжения в линии соединения счетчика с ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный ИИК в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше требования.
- 2 Допускается падение напряжения в линии соединения счетчика с ТН определять расчетным путем, если известны параметры проводной линии связи и сила электрического тока, протекающего через линию связи.

7.9 Проверка погрешности системного времени

- 7.9.1 Подключают радиочасы «МИР РЧ-01» к переносному компьютеру и настраивают на нём точное время. После этого проверяют показание часов УСПД и определяют разницу показаний с переносным компьютером.
- 7.9.2 Распечатывают журнал событий всех компонентов системы, имеющих встроенные программные часы (сервер, АРМ, УСПД и счетчики) выделив события, соответствующие сличению часов. Расхождение времени часов всех компонентов системы, имеющих встроенные программные часы в момент предшествующий коррекции не должно превышать предела допускаемого расхождения, указанного в описании типа системы: ±5 с/сутки.

7.10 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального сервера.

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

- 7.10.1 На сервере системы распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30-ти минутным интервалом за полные предшествующие дню проверки сутки по всем ИК. Проверяют наличие данных, соответствующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента системы.
- 7.10.2 Распечатывают журнал событий счетчика и УСПД и отмечают моменты нарушения связи между измерительными компонентами системы. Проверяют сохранность измерительной информации в памяти УСПД и сервере системы на тех интервалах времени, в течение которого была нарушена связь.

- 7.10.3 Распечатывают на сервере профиль нагрузки за полные сутки, предшествующие дню поверки. Используя переносной компьютер, считывают через оптопорт профиль нагрузки за те же сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящейся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и базе данных центрального сервера не должно превышать двух единиц младшего разряда учтенного значения.
- 7.10.4 Рекомендуется вместе с проверкой по п. 7.9.2 сличать показания счетчика по активной и реактивной электрической энергии строго в конце получаса (часа) и сравнивать с данными, зарегистрированными в сервере системы для того же момента времени. Для этого визуально или с помощью переносного компьютера через оптопорт считывают показания счетчика по активной и реактивной электрической энергии и сравнивают эти данные (с учетом коэффициентов трансформации измерительных трансформаторов), с показаниями зарегистрированными в сервере системы. Расхождение не должно превышать две единицы младшего разряда.

8 Методика проверки идентификации ПО.

8.1 Определение идентификационного наименования ПО.

Для определения идентификационного наименования ПО «Пирамида 2000» необходимо:

1) Найти файл «CalcClients.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 1) указано идентификационное наименование ПО – «CalcClients.dll».

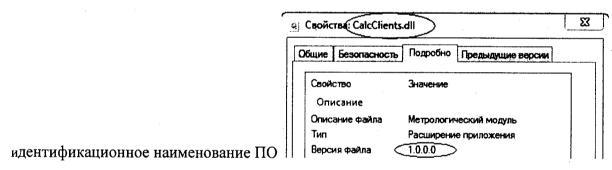


Рисунок 1 - Идентификационные данные ПО «Пирамида 2000».

2) Найти файл «CalcLeakage.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 2) указано идентификационное наименование ПО — «CalcLeakage.dll».

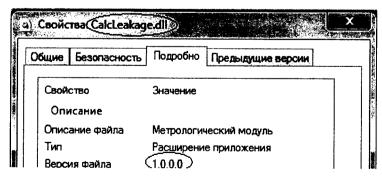


Рисунок 2 - Идентификационные данные ПО «Пирамида 2000».

3) Найти файл «CalcLosses.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем

окне выбрать закладку «Подробно». В верхней части окна (рисунок 3) указано идентификационное наименование ПО – «CalcLosses.dll».

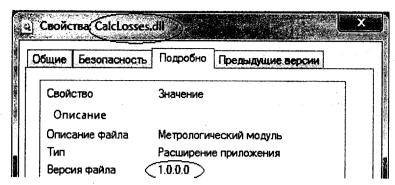


Рисунок 3 - Идентификационные данныеПО «Пирамида 2000».

4) Найти файл «Metrology.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 4) указано идентификационное наименование ПО — «Metrology.dll».

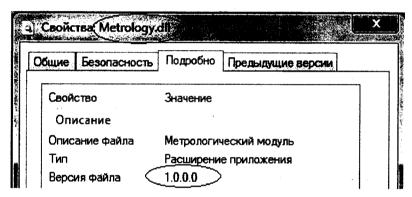


Рисунок 4 - Идентификационные данные ПО «Пирамида 2000».

5) Найти файл «ParseBin.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 5) указано идентификационное наименование ПО — «ParseBin.dll».

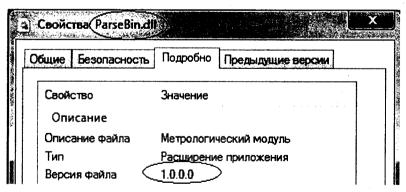


Рисунок 5 - Идентификационные данныеПО «Пирамида 2000».

6) Найти файл «ParseIEC.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 6) указано идентификационное наименование ПО — «ParseIEC.dll».

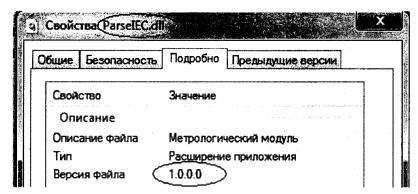


Рисунок 6 - Идентификационные данныеПО «Пирамида 2000».

7) Найти файл «ParseModbus.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 7) указано идентификационное наименование ПО — «ParseModbus.dll».

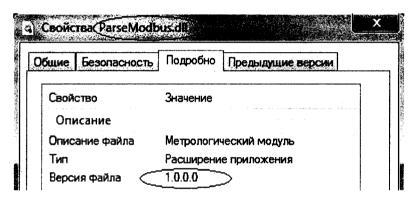


Рисунок 7 - Идентификационные данные ПО «Пирамида 2000».

8) Найти файл «ParsePiramida.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 8) указано идентификационное наименование ПО — «ParsePiramida.dll».

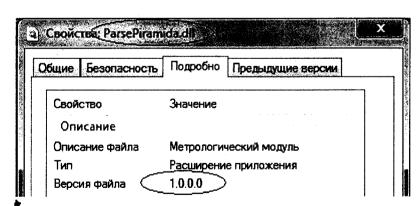


Рисунок 8 - Идентификационные данные ПО «Пирамида 2000».

9) Найти файл «SynchroNSI.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 9) указано идентификационное наименование ПО — «SynchroNSI.dll».

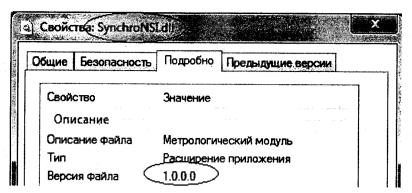


Рисунок 9 - Идентификационные данные ПО «Пирамида 2000».

10) Найти файл «VerifyTime.dll» по следующему пути «C:\P2kServer\». Выделить файл и нажать правую кнопку мыши, в выпавшем меню выбрать пункт — «свойства». В выпавшем окне выбрать закладку «Подробно». В верхней части окна (рисунок 10) указано идентификационное наименование ПО — «VerifyTime.dll».

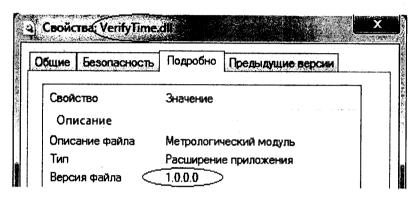


Рисунок 10 - Идентификационные данные ПО «Пирамида 2000»

8.2 Определение цифрового идентификатора ПО

Для определения цифрового идентификатора ПО «Пирамида 2000» необходимо:

- 1) Найти файл «CalcClients.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «CalcClients.dll» e55712d0b1b219065d63da949114dae4.
- 2) Найти файл «CalcLeakage.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «CalcLeakage.dll» b1959ff70be1eb17c83f7b0f6d4a132f.
- 3) Найти файл «CalcLosses.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «CalcLosses.dll» d79874d10fc2b156a0fdc27e1ca480ac.
- 4) Найти файл «Metrology.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «Metrology.dll» 52e28d7b608799bb3ccea41b548d2c83.
- 5) Найти файл «ParseBin.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «ParseBin.dll» 6f557f885b737261328cd77805bd1ba7.

- 6) Найти файл «ParseIEC.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «ParseIEC.dll» 48e73a9283d1e66494521f63d00b0d9f.
- 7) Найти файл «ParseModbus.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «ParseModbus.dll» c391d64271acf4055bb2a4d3fe1f8f48.
- 8) Найти файл «ParsePiramida.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «ParsePiramida.dll» ecf532935ca1a3fd3215049af1fd979f.
- 9) Найти файл «SynchroNSI.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «SynchroNSI.dll» 530d9b0126f7cdc23ecd814c4eb7ca09.
- 10) Найти файл «VerifyTime.dll» по следующему пути «C:\P2kServer\». Рассчитать контрольную сумму по алгоритму MD5. Результат расчета контрольной суммы файла «VerifyTime.dll» 1ea5429b261fb0e2884f5b356a1d1e75.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 На основании положительных результатов по пунктам раздела 7 выписывают свидетельство о поверке АИИС КУЭ в соответствии с приложением 1 к порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке, утвержденному приказом Минпромторга России от 2 июля 2015 г. N 1815. В приложении к свидетельству указывают перечень ИК.
- 9.2 При отрицательных результатах поверки АИИС КУЭ признается негодной к дальнейшей эксплуатации и на нее выдают извещение о непригодности к применению в соответствии с приложением 1 к порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке, утвержденному приказом Минпромторга России от 2 июля 2015 г. N 1815 с указанием причин.

Приложение А. Состав измерительных каналов системы автоматизированной информационно-измерительной коммерческого учета электрической энергии (мощности) АИИС КУЭ ОАО «Татэнергосбыт» седьмая очередь и их основные метрологические характеристики

Таблица А1.

Ž	П	ŭ	Состав измерительного канала	ого канала		Вид	Метрологические характеристики ИК	гческие стики ИК
п/п	объекта и ИИК	TT	ТН	Счетчик	успд	измеря- емой энергии	основная погрешно сть. %	Погрешность в рабочих условиях. %
-	2	3	4	5	9	7	8	6
	OA	ОАО «Татэнергосбыт» - ОАО «ФСК ЕЭС» МЭС Урала (по сетям Оренбургской области)	- OAO «ФСК ЕЭС	» МЭС Урала (п	о сетям Оренб	ургской обла	сти)	
	ПС Бугульма-500 (500/220/110/35/10)	ТФНД-220 -1; Коэфф. тр. 1200/1 КТ 0,5	НКФ-220-58; КТ 0,5 Коэфф. тр.	CЭT - 4TM.03M KT 0.2S/0.5	CUKOH C70	активная	±0,8	±1,9
	БЛ 220 КБ Бугульма- Михайловская	Госреестр № 3694- 73	220000/100, №Toc. p. 14626-06	Госрестр № 36697-08	28822-05	реактивная	6,0±	±2,9
2	ПС Бугульма-500 (500/220/110/35/10) ВЛ 220 кВ Бугульма-	ТФНД-220 -1; Коэфф. тр. 1200/1 КТ 0,5	НКФ-220-58; КТ 0,5 Коэфф. тр.	CЭT - 4TM.03M KT 0.2S/0.5	CMKOH C70	активная	₹0,8	±1,9
	Михайловская (резерв)	Γocpeecτp № 3694- 73	220000/100, №Foc. p. 14626-06	Госреестр № 36697-12	28822-05	реактивная	6,0±	±2,9
(r	ПС Бугульма-500 (500/220/110/35/10)	ТФНД-220 -1; Коэфф. тр. 600/1 КТ 0 5	НКФ-220-58; КТ 0,5 Коэфф. тр.	C3T - 4TM.03M	СИКОН С70	активная	±0,8	±1,9
)	ВЛ 220 кВ Бугульма- Северная	Госре	Neloc. p. 14626-	Tocpeecrp № 36697-08	28822-05	реактивная	€,0±	±2,9
4	ПС Бугульма-500 (500/220/110/35/10)	ТФНД-220 -1; Коэфф. тр. 600/1 КТ 0 5	НКФ-220-58; КТ 0,5 Коэфф. тр. 220000/100	C9T - 4TM.03M KT 0 28/0 5	CMKOH C70	активная	*0,8	±1,9
	ВЛ 220 кВ Бугульма- Северная (резерв)	Госрестр № 3694- 73	Neroc. p. 14626- 06	Tocpeectp № 36697-12	28822-05	реактивная	+0,9	±2,9

Продолжение таблицы 1

6	±1,9	±2,9	±1,9 ±2,9			±1,8	+3,9		±1,9	±2,9	±2,1	+3,9
8	₹0,8	6,0±	±0,8 ±0,9		_		€0,8		₹0,8	6,0±	±1,0	±1,3
7	эктивнад	реактивная	активная	реактивная	вской област	активная	реактивная		активная	реактивная	активная	реактивная
9		СИКОН С70 Госрестр № 28822-05	СИКОН С70	28822-05	10 сетям Киро	СИКОН С70	СИКОН С70 Госреестр № 28822-05		СИКОН С70	28822-05	CUKOH C70	28822-05
5	S CЭT -4TM.03M KT 0,2S/0,5 Госресстр № 36697-08		Госрестр № 36697-08 СЭТ -4ТМ.03М КТ 0,2S/0,5 Госрестр № 36697-12		С» МЭС Урала (1	CЭT -4TM:03M KT 0,2S/0,5	Госреестр № 36697-12	» - ОАО «Ульяно	CЭT -4TM.03M KT 0,2S/0,5	Госреестр № 36697-12	CЭТ -4TM.02.2 KT 0,5/1,0 Госреестр № 20175-01	
4	НКФ-220-58; КТ	0,5 Ko3фф. тр. 220000/100, №Гос. р. 14626- 06	НКФ-220-58; КТ 0,5 Коэфф. тр.	Neroc. p. 14626- 06	г» - ОАО «ФСК ЕЭ	3HF-Y9TM KT 0,2 Krr=	L20000/100 Focpeectp № 53343-13	ОАО «Татэнергосбыт» - ОАО «Ульяновскэнерго»	HKΦ-110- 83У1 KT 0,5 Krr=	Tocpeectp № 1188-84	HKΦ-110-83У1 KT 0,5 Krr=	Tocpectp № 1188-84
3	ТФНД-220 -1;	Коэфф. тр. 2000/1 КТ 0,5 Госреестр № 3694-73	ТФНД-220 -1; Коэфф. тр. 2000/1 кто с	N.I. 0,5 Focpeecrp № 3694-73	ОАО «Татэнергосбыт» - ОАО «ФСК ЕЭС» МЭС Урала (по сетям Кировской области)	ТОГФ-220 КТ 0,2S	Госрестр № 46527-11	0A	ТФЗМ-110Б КТ 0,5 Ктт=300/5 Госреестр № 24811-03		ТФЗМ-110Б КТ 0,5 Ктт=300/5	Госрестр № 24811-03
2	ма-500		ПС Бугульма-500	(500/220/110/55/10) ОВ-220 кВ (резерв)	0		ВЛ 220 кВ Кутлу- Букаш-Вятские Поляны ПС Раково ВЛ-110 кВ Раково-Ишеевка		кВ Раково-Ишеевка	ПС Раково ВЛ-110	(pesepb)	
1		2	4	 D		,			٥	•	o	

Продолжение таблицы 1

6	±1,9		1	±2,9			e,1± 		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	±2,9		+10	761-		±2,9	-	±1,9		±2.9	
8	±0 , 8	·		0,0			±0,8			±0,9		8 0+	0,01		+0,9	0 0	±0,8		0.0	
7	активная реактивная				активная					активная			эктивнаа	divinition		резктивнае	peanimonar			
9	6 СИКОН С70 Госреестр № 28822-05					СИКОН С70 Госреестр № 28822-05					CMKOH C1 Focpeectp № 29484-05			CMKOH C1 Γocpeectp № 29484-05						
5	CЭT -4TM.03M KT 0,2S/0,5 Госреестр № 36697-12				CЭT -4TM.03M KT 0,2S/0,5 Госреестр № 36697-12					CЭT -4TM.03M KT 0,2S/0,5 Госреестр № 36697-12			CЭТ -4TM.03M KT 0,2S/0,5 Госреестр № 36697-12			71-17000				
4	3HΓ KT 0,2 Kττ= 110000/100 Γοсреестр № 41794-09				3HF KT 0,2 KTT= 110000/100 FocpeecTp Ne 41794-09						3HOM-35-65V1	KI 0,5 KTT= 25000/100	53000/100 Footgoom Ma	1 Ocheecip 112 912-70	3HOM-35-65Y1	KT 0,5 Krr=	35000/100	Госреестр №	912-70	
E)	TG KT 0,2S Krr=300/5 Focpeecrp Ne 30489-09				TG KT 0,2S Krr=300/5 Γοсрестр № 30489-09				ТФЗМ-35А-1У1 КТ 0,5 Ктт=150/5 Госреестр № 24617-06			ТФЗМ-35А-1У1 КТ 0,5 Ктт=150/5 Госреестр № 24617-06			00-1101-7					
2	ПС Болгары ВЛ-110	кВ Болгары-	Кр.Река с заходом	на ПС Матвеевка и отпайкой на ПС	Жедяевка	ПС Болгары ВЛ-110 кВ Болгары- Кр.Река с заходом К на ПС Матвеевка и отпайкой на ПС Жедяевка (резерв)				3JI- II - M			на ПС Хмелевка	ПС Иске-Рязап ВЛ-	35 кВ Иске-Рязап -	Тиинск с заходом	на ПС Хмелевка	(резерв)		
-			10	,			-	=	•				5	71		13 13 H				