УТВЕРЖДАЮ АО «НИИФИ»

Датчик осевых и радиальных биений ПЛИ 089 МЕТОДИКА ПОВЕРКИ СДАИ.402161.035МП

л.р.64643-16

Вводная часть

Настоящая методика поверки распространяется на датчики осевых и радиальных биений ПЛИ 089, предназначенных для измерения осевых и радиальных биений валов изделий и преобразования их в аналоговый выходной сигнал (напряжение постоянного тока).

Датчик состоит из первичного измерительного преобразователя (ПИП) с кабельной перемычкой и вторичного измерительного преобразователя (ВИП).

Межповерочный интервал – 2 года.

1 Операции поверки

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

	Номер пунк-	Проведение операции при				
Наименование операции	та методики	первичной	периодиче-			
•	по поверке	поверке	ской поверке			
1 Контроль внешнего вида, маркировки, массы и	6.1	да	да			
габаритных размеров датчика						
2 Контроль начального и конечного значения	6.2	да	да			
выходного сигнала						
3 Контроль основной приведенной погрешности	6.3	да	да			

1.2 При получении отрицательного результата при проведении любой операции поверка прекращается.

2 Средства поверки

2.1 При проведении поверки рекомендуется применять средства поверки, указанные в таблице 2.

Таблица 2

Основные метрологические характеристики
Диапазон от 0 до 10 мм, погрешность ± 0.01 мм
Диапазон от 0,2 до 75 В, погрешность
$\pm (0,008 \mathrm{U}_{\mathrm{ycr}} + 0,1) \mathrm{B}$, диапазон от 0,1 до 4 A, по-
грешность $\pm (0.02I_{\text{max}} + 0.05) A$
Диапазон от 0 до 1000 В, погрешность
±(0,0035 - 0,005)%
- Диапазон измерений от 0 до 16 мм, погрешность
0,01 mm
Диапазон измерений от 10 до 2000 г, погрешность
±2 Γ
Диапазон измерений от 0 до 250 мм, погрешность
± 0,05 mm

2.2 Допускается замена средств поверки, указанных в таблице 2, другими средствами поверки с равным или более высоким классом точности.

3 Требования безопасности

3.1 При проведении поверки необходимо соблюдать общие требования безопасности по ГОСТ 12.3.019-80 и требования на конкретное поверочное оборудование.

4 Условия поверки

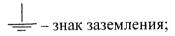
- 4.1 Все операции при проведении поверки, если нет особых указаний, должны проводиться в нормальных климатических условиях:
 - температура воздуха от 15 °C до 35 °C;
 - относительная влажность воздуха от 45 % до 75 %;
 - атмосферное давление от $8,6\cdot10^4$ до $10,6\cdot10^4$ Па (от 645 до 795 мм рт.ст.).

Примечание – При температуре воздуха выше 30 °C относительная влажность не должна превышать 70%.

5 Подготовка к поверке

- 5.1 Перед проведением поверки испытательные установки, стенды, аппаратура и электроизмерительные приборы должны иметь формуляры (паспорта) и соответствовать стандартам или техническим условиям на них.
- 5.2 Не допускается применять средства поверки, срок обязательных поверок которых истек.
- 5.3 Предварительный прогрев контрольно-измерительных приборов должен соответствовать требованиям технических описаний и инструкций по эксплуатации на них.
- 5.4 Контрольно-измерительные приборы должны быть надежно заземлены с целью исключения влияния электрических полей на результаты измерений.
- 5.5 Все операции по поверке, если нет особых указаний, проводить после прогрева датчика напряжением питания в течение 1 мин.
 - 5.6 В процессе поверки датчика менять средства измерений не рекомендуется.
- 5.7 Порядок проведения испытаний должен соответствовать порядку изложения видов испытаний в таблице 1.

6 Проведение поверки

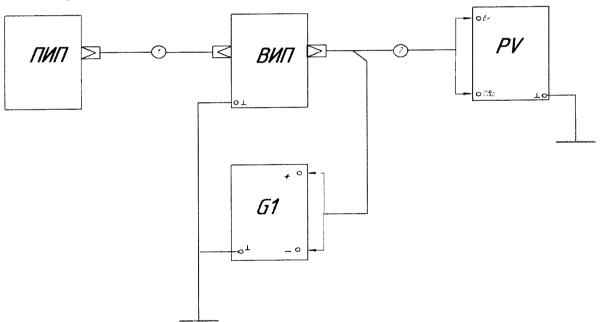

6.1 Контроль внешнего вида, маркировки, массы и габаритных размеров датчика

- 6.1.1 Контроль внешнего вида проводить визуально.
- 6.1.2 На поверхности датчиков не должно быть механических повреждений (вмятин, царапин, забоин, трещин), отслоений покрытий, следов коррозии. На поверхности корпуса первичного измерительного преобразователя (далее ПИП) датчиков, в месте соединения керамического корпуса и титановой втулки, допускаются следы припоя.
 - 6.1.3 Контроль маркировки проводить визуально.
 - 6.1.4 На каждом ПИП датчика должно быть отчетливо выгравировано:
 - ПИП...ПИП-02 условное обозначение первичного измерительного преобразователя;
 - XXXXXX заводской номер (шестизначное число).

На каждом вторичном измерительном преобразователе (далее – ВИП):

- ПЛИ 089...ПЛИ 089-05 индекс датчика;
- ВИП...ВИП-05 условное обозначение вторичного измерительного преобразователя;
- диапазон измерений;
- обозначение разъема «ДАТЧИК»;
- обозначение разъема «ВЫХОД»;
- вид измеряемых биений;

ХХХХХХ— заводской номер (шестизначное число), являющийся заводским номером датчика;


- сэ знак защиты от статического электричества.
- 6.1.5 Контроль массы проводить взвешиванием первичного измерительного преобразователя (далее ПИП) и вторичного измерительного преобразователя (далее ВИП) датчика на весах любой конструкции с погрешностью до ± 2 г. Результаты измерения занести в таблицу A1.
- 6.1.6 Масса ПИП датчика должна быть не более 0,1 кг (без кабельной перемычки), масса ВИП датчика не более 0,5 кг.
- 6.1.7 Контроль габаритных размеров (118.5max x 76,3max x 34max; 2505^{+50}_{-30}) проводить измерительными средствами, обеспечивающими необходимую точность. Результаты измерений занести в таблицу A1.

6.2 Контроль начального и конечного значения выходного сигнала

6.2.1 Установить ПИП датчика на устройстве для воспроизведения перемещений Вт 2.787.062 (устройство), а имитатор поверхности объекта (имитатор) на подвижной части устройства.

Примечания:

- 1. Для контроля датчиков ПЛИ 089, ПЛИ 089-02, ПЛИ 089-04 применять имитатор осевой поверхности объекта СДАИ.713511.033, датчиков ПЛИ 089-01, ПЛИ 089-03, ПЛИ 089-05 имитатор радиальной поверхности объекта СДАИ.713513.017.
- 2. Для контроля датчиков ПЛИ 089, ПЛИ 089-01 применять втулку СДАИ.713561.012, датчиков ПЛИ 089-02, ПЛИ 089-03 втулку СДАИ.713561.012-01, датчиков ПЛИ 089-04, ПЛИ 089-05 втулку СДАИ.713561.012-02.
 - 6.2.2 Собрать схему согласно рисунку 1.

- 1 кабельная перемычка ПИП датчика;
- 2 кабель МКНИ.685619.095;
- G1 источник питания постоянного тока Б5-71/4М;
- PV мультиметр Agilent 34401A.

Рисунок 1- Схема контроля датчика

- 6.2.3 Установить напряжение на источнике питания G1 (27±0,5) В и подать напряжение питания на датчик.
- 6.2.4 Перемещая подвижную часть устройства, подвести имитатор к рабочему торцу ПИП датчика до соприкосновения. Установить шкалу индикатора в нулевое положение. Переместить подвижную часть устройства на величину 0,1 мм для датчиков ПЛИ 089, ПЛИ 089-01,

ПЛИ 089-04, ПЛИ 089-05 или на величину 0,01 мм для датчиков ПЛИ 089-02, ПЛИ 089-03. Зафиксировать значение выходного сигнала датчика по прибору PV.

Начальное значение выходного сигнала должно быть $(0,25\pm0,25)$ В. Результаты занести в таблицы по форме таблиц A.2, A.3.

- 6.2.5 Переместить имитатор с помощью устройства в сторону увеличения зазора и зафиксировать значение выходного сигнала по прибору PV в градуировочных точках в соответствии с таблицей А.3. Величину перемещений задавать индикатором ИЧ 10. Конечное значение выходного сигнала должно быть (5,75±0,25) В. Результаты занести в таблицы по форме таблиц А.2, А.3.
- 6.2.6 Переместить имитатор с помощью устройства в обратном направлении и зафиксировать значение выходного сигнала по прибору PV в градуировочных точках в соответствии с таблицей А.3.

Контроль задаваемого перемещения осуществлять по индикатору ИЧ 10.

6.2.7 Повторить операции по пп.6.2.4 - 6.2.6 еще один раз. Результаты контроля занести в таблицу по форме таблицы А.3.

Выходной сигнал должен соответствовать пп.6.2.4, 6.2.5.

6.3 Контроль основной приведенной погрешности

6.3.1 Используя результаты измерений по пп.6.2.4-6.2.7 рассчитать значение основной приведенной погрешности по формуле:

$$\gamma_0 = \pm K \sqrt{\frac{\sum_{j=1}^{m} \sum_{j=1}^{2n} (y_{ji}^{(M,B)} - \sum Y_j)^2}{N^2 m (2n-1)}} + \sum_{\rho=1}^{r} \tilde{D}_{obp,\rho} \ge 100\%$$

где
$$\sum_{q=1}^{r} \hat{D}_{o\delta\rho,\rho} = 1.10^{-9};$$

т – число точек градуирования;

n — число повторений измерений в каждой точек. κ - коэффициент, учитывающий доверительную вероятность;

..... *l* - степень полинома

N - нормирующее значение выходного сигнала

 y_0, y_κ - усредненные значения выходного сигнала, соответствующие начальному и конечному значению величины перемещения, соответственно

6.3.2 Значение основной приведенной погрешности должно находиться в пределах ± 1 %.

7 Оформление результатов поверки

7.1 Результаты поверки преобразователей оформить в соответствии с Приказом Министерство промышленности и торговли РФ от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Приложение А

Формы таблиц для регистрации результатов поверки

Таблица A.1 – Результаты контроля внешнего вида, маркировки, массы и габаритных размеров датчика

Наименование параметра	Требования по ТУ	Действительное состояние Заводской номер					
Внешний вида	соотв.						
Маркировка	соотв.						
Масса:, кг – ПИП датчика, – ВИП датчика	не более 0,1 не более 0,5						
Габаритные размеры, мм: – ВИП, – длина кабельной перемычки	118,5max x 76,3max x 34max 2505 ⁺⁵⁰ ₋₃₀						

Таблица А.2 – Результаты контроля выходного сигнала – начального и конечного

Заводской номер	Значение выходного сигнала датчика, В								
	в началі	ьной точке	в конеч	ной точке					
	норма по ТУ	действительное значение	норма по ТУ	действительное значение					
	0,25±0,25		5,75±0,25						

Таблица А.3 – Результаты определения градуировочной характеристики

													_											
Значение основной приведенной по-	грешности, %	действительное	значение																					
Значение основно	грешн	норма по ТУ						не более 1									,	не более 1						
a, B		2 цикл	обратный ход											-						4				
одного сигнал		2	дох йомвфп ј																					
Значение выходного сигнала, В		1 цикл	од обратный ход																					
			прямой ход											:									, , , . .	
Величина	перемещения,	MM		0,1	0,2	0,3	0,4	0,5	9,0	0,7	8,0	6,0	1,0	0,01	0,15	0,30	0,45	09'0	0,75	06,0	1,05	1,20	1,35	1.50
Номер	градуировочной	TOYKN, j	•		2	co.	4	S	9	7	8	6	10		2	3	4	5	9	7	8	6	10	-
Заволской	номер	-								-														

Продолжение таблицы А.3

Значение основной приведенной погрешности, %	действ.	значение										
	норма по ТУ					•	не более 1					
Значение выходного сигнала, В	2 цикл	прямой ход обратный ход										
	1 цикл	прямой ход обратный ход										
Величина пере- мещения, мм			0,1	0.4	0,7	1.0	1,3	1,6	1,9	2,2	2,5	2.8
Номер градуировочной	точки, ј			2	3	4	5	9	7	8	6	10
Заводской номер	1					-						