УТВЕРЖДАЮ

Руководитель ГЦИ СИ ФБУ «Ивановский ЦСМ» Д.И. Кудрявцев « » 26 2013 г.

АНАЛИЗАТОРЫ КАЛИБРОВОЧНЫЕ CITREX H4 МЕТОДИКА ПОВЕРКИ

г. Иваново

Настоящая методика устанавливает методы и средства первичной и периодической поверки анализаторов калибровочных Citrex H4.

Межповерочный интервал – один год.

1 Операции поверки

При проведении поверки должны быть выполнены операции, указанные в Таблице 1.

Таблица 1

Наименование операции	Номер пунк-	Проведение операции при	
	та методики	первичной	периодической
	поверки	поверке	поверке
1	2	3	4
Внешний осмотр	7.1	Да	Да
Опробование	7.2	Да	Да
Определение метрологических характеристик:	7.3	Да	Да
Определение погрешности анализатора при измерении низкого давления	7.3.1	Да	Да
Определение погрешности анализатора при измерении высокого давления	7.3.2	Да	Да
Определение погрешности анализатора при измерении расхода	7.3.3	Да	Да
Определение погрешности анализатора при измерении объема	7.3.4	Да	Да
Определение погрешности анализатора при измерении объемной доли кислорода	7.3.5	Да	Да
Определение погрешности анализатора при измерении атмосферного давления	7.3.6	Да	Да
Определение погрешности анализатора при измерении температуры	7.3.7	Да	Да

При получении отрицательных результатов при проведении какой-либо операции дальнейшая поверка прекращается.

2 Средства поверки

При проведении поверки должны применяться средства, указанные в Таблице 2.

Таблица 2

Номер пункта методики по- верки	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
1	2
5	Прибор комбинированный Testo-608-H2, диапазон измерений 15-85 %, ПГ ± 3 %, диапазон измерений 0-50 °C, ПГ $\pm 0,5$ °C Барометр-анероид метеорологический БАММ-1, диапазон измерений 80-106 кПа, ПГ $\pm 0,2$ кПа

1	2
7.3	Калибратор многофункциональный МС2-R,
7.3.1	модуль EXT100m, диапазон измерений 0-10 кПа, ПГ \pm (0,015 %П+0,025 %ВПИ) модуль EXT400mC, диапазон измерений \pm 40 кПа, ПГ \pm (0,015 %П+0,02 %ВПИ)
7.3.2	модуль EXT2C, -100+200 кПа, ПГ \pm (0,015 %П+0,01 %ВПИ) модуль IPM20C, диапазон измерений -100+2000 кПа, ПГ \pm (0,035 %ВПИ) Пресс P5512, 0-2 МПа
7.3.6	модуль В, диапазон измерений 80-120 кПа, ПГ ± 0.03 кПа Барокамера БК, 80-120 кПа
ļ	Помпа ручная пневматическая П-0,25, -63+250 кПа
7.3.3	Стенд для поверки спирометров СПС-02, диапазон измерений 1,8-90 дм 3 /мин, ПГ $\pm 0,008$ дм 3 /мин, диапазон измерений 90-900 дм 3 /мин, ПГ $\pm 0,26$ %
7.3.4	Установка поверочная для счетчиков газа УПС-7,5, диапазон измерений $0,004\text{-}400~\text{дм}^3,~\Pi\Gamma \pm 0,5~\%$
7.3.5	Поверочные газовые смеси: Азот нулевой ТУ 6-21-39-96 — объемная доля O_2 0,001 % Кислород ОСЧ ТУ 21114-001-05798345 — объемная доля O_2 (99,999±0,001)% Воздух нулевой ТУ 6-21-5-82 — объемная доля O_2 (20,9±0,5) % Ротаметр РМ-А-0,063ГУЗ, 3-25 л/мин, ПГ ±4 % Вентили точной регулировки ВТР-1, трубки резиновые
7.3.7	Камера климатическая MHU-225 CSSA, диапазон измерений -70+100 °C, точность поддержания ± 0.3 °C Термометр сопротивления платиновый ПТС-10, диапазон измерений 0-250 °C, 1 разряд
	Измеритель-регулятор температуры многоканальный прецизионный МИТ8.10М, диапазон измерений -200+500 °C, $\Pi\Gamma \pm (0.0035+10^{-5}t)$ °C

Средства измерений, применяемые при поверке, должны иметь действующие свидетельства о поверке.

Допускается применять другие средства поверки, метрологические характеристики которых будут не хуже указанных в Таблице 2.

3 Требования к квалификации поверителей

К проведению поверки допускаются лица, аттестованные в качестве поверителей в установленном порядке. Поверитель должен изучить эксплуатационную документацию поверяемого анализатора.

4 Требования безопасности

При проведении поверки должны соблюдаться требования, определяемые правилами безопасности при эксплуатации анализатора и используемых средств поверки.

Помещение, где проводится поверка, должно быть оборудовано приточно-вытяжной вентиляцией.

При работе с баллонами под давлением должны соблюдаться «Правила устройства и безопасности эксплуатации сосудов, работающих под давлением».

5 Условия проведения испытаний

- температура окружающего воздуха: (20±5) °C,
- относительная влажность: (60±20) %,
- атмосферное давлении: (101,3±4,0) кПа.

6 Подготовка к поверке

Подготовить анализатор к работе в соответствии с «Анализатор калибровочный Citrex H4. Инструкция по эксплуатации».

7 Проведение поверки

7.1 Внешний осмотр

При проведении внешнего осмотра необходимо проверить соответствие комплектности анализатора эксплуатационной документации. Необходимо проверить анализатор на отсутствие повреждений, вмятин, трещин или погнутых деталей.

7.2 Опробование

Включить анализатор в соответствие с «Анализатор калибровочный Citrex H4. Инструкция по эксплуатации».

При проведении опробования выполняют операцию по подтверждению соответствия программного обеспечения анализатора, которое заключается в определении номера версии программного обеспечения. На дисплее анализатора нажать на символ \mathbf{X} для перехода к информационному экрану, на котором отображается информация об устройстве и номере версии программного обеспечения.

Результат подтверждения соответствия программного обеспечения считается положительным, если полученный номер версии программного обеспечения соответствует указанному в разделе «Идентификационные данные программного обеспечения» описания типа анализатора.

7.3 Определение метрологических характеристик

7.3.1 Определение погрешности анализаторов при измерении низкого давления.

Соединить анализатор через канал потока с многофункциональным калибратором. В окне конфигурации выбрать измеряемый параметр и единицы измерения. С помощью пресса подавать на анализатор давление минус 5; минус 1,5; 0; 1,5, 5; 15 кПа. Результаты измерений считывать с дисплея анализатора.

Рассчитать абсолютную погрешность в каждой поверяемой точке по формуле:

$$\Delta = PH_i - PH_a$$
, κΠα,

где Рн_і – показания анализатора в каждой поверяемой точке, кПа;

Рнд – заданное значение давления в каждой поверяемой точке, кПа.

Результаты поверки считаются положительными, если выполняются следующие условия:

- - для каждой поверяемой точки в диапазоне давления от минус 1,5 до плюс 1,5 кПа
- Δ ≤ ±0,01 кПа;
- для каждой поверяемой точки в диапазонах давления от минус 5 до минус 1,5 кПа и от 1,5 до 15 кПа

$$-\gamma \le \pm 0.5 \%$$
,

где γ – приведенная погрешность в диапазонах давления от минус 5 до минус 1,5 кПа и от 1,5 до 15 кПа

$$\gamma = 100 \cdot \frac{\Delta}{P_H}$$
, %,

где Рн – нормирующее значение, равное разности между верхней и нижней границей диапазона показаний низкого давления.

7.3.2 Определение погрешности анализаторов при измерении высокого давления.

Соединить анализатор через разъем высокого давления с многофункциональным калибратором. В окне конфигурации выбрать измеряемый параметр и единицы измерения. С помо-

щью пресса подавать на анализатор давление 0; 40; 100; 250; 600; 1000 кПа. Результаты измерений считывать с дисплея анализатора.

Рассчитать абсолютную погрешность в каждой поверяемой точке по формуле:

$$\Delta = Pe_i - Pe_o$$
, κΠα,

где Рві – показания анализатора в каждой поверяемой точке, кПа;

Рвд – заданное значение давления в каждой поверяемой точке, кПа.

Результаты поверки считаются положительными, если выполняются следующие условия:

- - для каждой поверяемой точки в диапазоне давления от 0 до 100 кПа
- $\Delta \leq \pm 1,0$ κΠα;
- для каждой поверяемой точки в диапазоне давления от 100 до 1000 кПа
- $-\gamma \le \pm 1.0 \%$

где у – приведенная погрешность в диапазоне давления от 100 до 1000 кПа

$$\gamma = 100 \cdot \frac{\Delta}{P_B}$$
, %,

где Рв – нормирующее значение, равное разности между верхней и нижней границей диапазона показаний высокого давления.

7.3.3 Определение погрешности анализаторов при измерении расхода.

Для проверки диапазона показаний от минус 300 до 0 дм³/мин подсоединить анализатор через канал потока в отрицательном направлении к стенду для поверки спирометров СПС-02. В окне конфигурации выбрать измеряемый параметр и единицы измерения. Подавать расход 2,5; 5; 50; 150; 300 дм³/мин. Для проверки диапазона показаний от 0 до 300 дм³/мин подсоединить анализатор через канал потока в отрицательном направлении к стенду для поверки спирометров СПС-02. В окне конфигурации выбрать измеряемый параметр и единицы измерения. Подавать расход 2,5; 5; 50; 150; 300 дм³/мин. Результаты измерений считывать с дисплея анализатора.

Рассчитать абсолютную погрешность в каждой поверяемой точке по формуле:

$$\Delta = Fi - F\partial$$
, дм³/мин,

где Fi – показания анализатора в каждой поверяемой точке, дм³/мин;

Fд – заданное значение расхода в каждой поверяемой точке, дм³/мин.

Результаты поверки считаются положительными, если для каждой поверяемой точки выполняются следующие условия:

- для каждой поверяемой точки в диапазоне расхода от минус 5 до плюс 5 дм³/мин
- $\Delta \le \pm 0.02$ дм³/мин;
- для каждой поверяемой точки в диапазонах расхода от минус 300 до минус 5 дм 3 /мин и от 5 до 300 дм 3 /мин

$$-\gamma \le \pm 1.0 \%$$
,

где γ — приведенная погрешность в диапазонах расхода от минус 300 до минус 5 дм 3 /мин и от 5 до 300 дм 3 /мин

$$\gamma = 100 \cdot \frac{\Delta}{F_H}$$
, %,

где Fн – нормирующее значение, равное разности между верхней и нижней границей диапазона показаний расхода.

7.3.4 Определение погрешности анализаторов при измерении объема.

Для проверки диапазона показаний от минус 10 до 0 дм³/мин подсоединить анализатор через канал потока в положительном направлении к установке поверочной УПС-7,5. В окне конфигурации выбрать измеряемый параметр и единицы измерения. Подавать объемы 0,5; 1; 3; 5; 10 дм³. Для проверки диапазона показаний от 0 до 10 дм³ подсоединить анализатор через канал потока в положительном направлении к установке поверочной УПС-7,5. В окне

конфигурации выбрать измеряемый параметр и единицы измерения. Подавать объемы 0.5; 1; 3; 5; 10 дм³. Считывать показания объема с дисплея анализатора.

Рассчитать абсолютную погрешность в каждой поверяемой точке по формуле:

$$\Delta = Vi - V\partial$$
, дм³,

где Vi – показания анализатора в каждой поверяемой точке, дм³;

Vд – заданное значение объема в каждой поверяемой точке, дм³.

Результаты поверки считаются положительными, если для каждой поверяемой точки выполняются следующие условия:

- для каждой поверяемой точки в диапазоне объема от минус 1 до плюс 1 дм³
- $\Delta \le \pm 0.02$ дм³;
- для каждой поверяемой точки в диапазонах объема от минус 10 до минус 1 дм 3 и от 1 до 10 дм 3

$$-\delta \le \pm 2.0 \%$$
,

где δ — относительная погрешность в диапазонах объема от минус 10 до минус 1 дм 3 и от 1 ло 10 лм 3

$$\delta = 100 \cdot \frac{\Delta}{V_{o}}$$
, %.

7.3.5 Определение погрешности анализаторов при измерении объемной доли кислорода.

В окне конфигурации выбрать измеряемый параметр и единицы измерения.. Вентилем точной регулировки установить на ротаметре расход 10 л/мин и подавать ПГС из баллона «Азот нулевой» через канал потока. Результаты измерений считывать с дисплея анализатора. Повторить операции для ПГС «Воздух нулевой» и «Кислород ОСЧ».

Рассчитать приведенную погрешность в каждой поверяемой точке по формуле:

$$\gamma = 100 \cdot \frac{C_i - C_{\delta}}{C}, \%,$$

где C_i – показания анализатора в каждой поверяемой точке, объемная доля кислорода, %; C_n – значение объемной доли кислорода в ПГС по паспорту, %;

C — нормирующее значение, равное разности между верхней и нижней границей диапазона показаний объемной доли кислорода.

Результаты поверки считаются положительными, если для каждой поверяемой точки выполняется следующее условие:

$$- \gamma \le \pm 1.0 \%$$
.

7.3.6 Определение погрешности анализаторов при измерении атмосферного давления.

В окне конфигурации выбрать измеряемый параметр и единицы измерения. Поместить анализатор в барокамеру, подсоединить многофункциональный калибратор к барокамере. С помощью ручной помпы подавать давление 80; 90; 100; 110; 120 кПа в барокамеру. Результаты измерений считывать с дисплея анализатора.

Рассчитать приведенную погрешность в каждой поверяемой точке по формуле:

$$\gamma = 100 \cdot \frac{P_i - P_o}{P}, \%,$$

где P_i – показания анализатора в каждой поверяемой точке, к Π а;

 P_{π} – заданное значение атмосферного давления в каждой поверяемой точке, кПа;

P – нормирующее значение, равное разности между верхней и нижней границей диапазона показаний атмосферного давления.

Результаты поверки считаются положительными, если для каждой поверяемой точки выполняется следующее условие:

$$-\gamma \le \pm 1.0 \%$$
.

7.3.7 Определение погрешности анализаторов при измерении температуры.

В окне конфигурации выбрать измеряемый параметр и единицы измерения. Поместить анализатор в климатическую камеру. Задавать в климатической камере значение температуры 0; 15; 25; 35; 50 °C. Время выдержки проверяемого анализатора при заданной температуре не менее 20 минут. Результаты измерений считывать с дисплея анализатора.

Рассчитать абсолютную погрешность в каждой поверяемой точке по формуле:

$$\Delta = T_i - T_o$$
, °C,

где T_i – показания анализатора в каждой поверяемой точке, °C;

 T_{n} – заданное значение температуры в каждой поверяемой точке, °C.

Результаты поверки считаются положительными, если для каждой поверяемой точки выполняется следующее условие:

-
$$\Delta \leq \pm 0.5$$
 °C.

7.4 Оформление результатов поверки

Результаты поверки заносятся в протокол поверки. Форма протокола произвольная.

При положительных результатах поверки выдается свидетельство о поверке установленной формы в соответствии с ПР 50.2.006-94.

При отрицательных результатах поверки анализатор признается непригодным и не допускается к дальнейшему применению, при этом выдается извещение о непригодности установленной формы в соответствии с ПР 50.2.006-94.