УТВЕРЖДАЮ «НИИФИ»

Датчик линейных перемещений потенциометрический серии ЛТР

> МЕТОДИКА ПОВЕРКИ СДАИ.400009.016 МП

л.р.63854-16

Вводная часть	3
1 Операции поверки	3
2 Средства поверки	3
3 Требования безопасности	3
4 Условия поверки	
5 Подготовка к поверке	
6 Проведение поверки	4
7 Оформление результатов поверки	-
Приложение А	8

Вволная часть

Настоящая методика по поверке распространяется на датчики линейных перемещений потенциометрические серии ЛТР (далее по тексту - датчики), предназначены для измерения линейных перемещений.

Интервал между поверками – 2 года.

1 Операции поверки

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1. Таблица 1

	Номер	Проведение операции при	
Наименование операции	пункта методики по поверке	первичной поверке	периодиче- ской поверке
1 Проверка маркировки, габаритных размеров датчи-	6.1	да	да
ков и механического хода штока			
2 Проверка номинального сопротивления	6.2	да	да
3 Проверка основной приведенной погрешности	6.3	да	да

1.2 При получении отрицательного результата при проведении любой операции поверка прекращается.

2 Средства поверки

2.1 При проведении поверки рекомендуется применять средства поверки, указанные в таблице 2.

Таблица 2

Основные метрологические характеристики	
Диапазон измерений от 0 до 250 мм, погрешность ± 0.05 мм	
Диапазон от 0 до 100 В, погрешность $\pm (0.0035 U_{изм} + 0.0006 U_{пр})\%$, диапазон $(0-10^8)$ Ом, погрешность $\pm (0.8 R_{изм} - 0.01 R_{пр})\%$	
Диапазон (0,2 - 75) В, погрешность \pm (0,002 U_{ycr} +0,1)	
Диапазон воспроизводимых перемещений от 0 до 250 мм	

2.2 Допускается замена средств поверки, указанных в таблице 2, другими средствами поверки с равным или более высоким классом точности.

3 Требования безопасности

3.1 При проведении поверки необходимо соблюдать общие требования безопасности по ГОСТ 12.3.019 и требования на конкретное поверочное оборудование.

4 Условия поверки

- 4.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающей среды от 15 °C до 35 °C;
- относительная влажность от 45 % до 80 %;
- атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.).

5 Подготовка к поверке

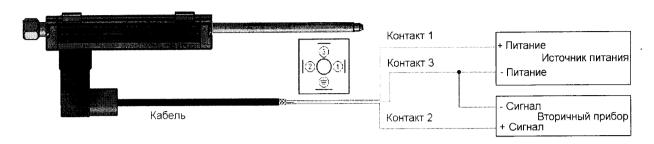
- 5.1 Перед проведением поверки испытательные установки, стенды, аппаратура и электроизмерительные приборы должны иметь формуляры (паспорта) и соответствовать стандартам или техническим условиям на них.
- 5.2 Применяемые средства поверки должны быть поверены (откалиброваны) в соответствии с ПР 50.2.016, а средства контроля аттестованы. Испытательное оборудование должно быть аттестовано в соответствии с ГОСТ Р 8.568.
- 5.3 Предварительный прогрев контрольно-измерительных приборов должен соответствовать требованиям технических описаний и инструкций по эксплуатации на них.
- 5.4 Контрольно-измерительные приборы должны быть надежно заземлены с целью исключения влияния электрических полей на результаты измерений.
 - 5.5 В процессе поверки запрещается подстраивать и регулировать изделие.
- 5.6 Порядок проведения испытаний должен соответствовать порядку изложения видов испытаний в таблице 1.

6 Проведение поверки

6.1 Проверка маркировки, габаритных размеров датчиков и механического хода штока

- 6.1.1 Проверка маркировки проводится визуальным осмотром. Датчики должны иметь таблички на гранях корпуса изделия. На табличке, расположенной на корпусе датчика со стороны разъема, должна быть указана следующая информация:
 - наименование изделия;
 - модификация;
 - заводской номер;
 - обозначение контактов разъема.

На табличке, расположенной на противоположной грани корпуса, должны быть указаны данные производителя изделия.


- 6.1.2 Проверку габаритных размеров и механического хода штока выполняется при помощи штангенциркуля соответствующего диапазона измерений и точностью не менее $\pm 0,05$ мм.
 - 6.1.3 Габаритные размеры датчиков не должны превышать:
 - для ЛТР-10 длина корпуса не должна превышать 48 мм, длина штока 46 мм,;
 - для ЛТР-25 длина корпуса не должна превышать 63 мм, длина штока 57 мм;
 - для ЛТР-50 длина корпуса не должна превышать 95 мм, длина штока 82 мм;
 - для ЛТР-75 длина корпуса не должна превышать 135 мм, длина штока 107 мм;
 - для ЛТР-100 длина корпуса не должна превышать 167 мм, длина штока 132 мм;
 - для ЛТР-150 длина корпуса не должна превышать 227 мм, длина штока 182 мм;

Механический ход датчиков должен находиться:

- для ЛТР-10 в пределах (12 \pm 1) мм,
- для ЛТР-25 в пределах (27±1) мм;
- для ЛТР-50 в пределах (52 \pm 1) мм;
- для ЛТР-75 в пределах (77±1) мм;
- для ЛТР-100 в пределах (102±1) мм;
- для ЛТР-150 в пределах (152±1) мм.
- 6.1.4 Результаты проверок записать в таблицу по форме таблицы А.1 приложения А.

6.2 Проверка номинального сопротивления

- 6.2.1 Проверка номинального сопротивления выполняется при помощи мультиметра цифрового Agilent 34401A.
- 6.2.2 Измерение сопротивления выполняется между контактами 2 и 3 разъема датчика (рисунок 1), при этом шток датчика должен находиться в полностью выпущенном состоянии. Измерение сопротивления выполняется не менее 3-х раз, между каждыми соседними измерениями производится цикл уборки-выпуска штока на полный механический ход.

Источник питания – источник питания постоянного тока Б5-71/4 ПРО; Вторичный прибор – мультиметр цифровой 34401A Рисунок 1 – Схема подключения датчика

Таблица 3 – Назначение контактов разъема

	№ контакта	Назначение
	1	Питание +
	2	Сигнал +
(-) \(\ \ \ \ \ \ \ \ \ (+)	3	Общий –
3 2 1		Экран

6.2.3 Результаты измерения номинального сопротивления занести в таблицу по форме таблицы А.2 приложения А.

6.3 Проверка основной приведенной погрешности

6.3.1 Определение основной приведённой погрешности осуществляется с помощью градуировочной характеристики.

Закрепить датчик на устройстве для воспроизведения перемещений СДАИ.441513.001 (далее — устройство И 068). Включить источник питания. С помощью штангенциркуля ШЦ-II (далее — штангенциркуль) задавать значения перемещения (прямой ход U_j^M — 10 точек, обратный ход U_j^E — 10 точек), измеряя значение выходного сигнала в каждой градуировочной точке с помощью мультиметра.

Результаты измерений занести в таблицу А.3 приложения А.

6.3.2 Определить величину коэффициентов функции преобразования (α_0 , α_1) основной приведенной погрешности (γ_0), используя значения выходного сопротивления (U_j) в градуировочных точках (j) по данным таблицы A.3.

Для построения градуировочной, при точно известных значениях входных величин используется метод наименьших квадратов.

Индивидуальная функция преобразования датчика соответствует формуле:

$$U = a_0 + a_1 x \tag{1}$$

где U – величина выходного сигнала, В;

ао - коэффициент функции преобразования, В;

а₁ – коэффициент преобразования, В/мм;

х – величина перемещения штока датчика, мм.

Коэффициенты индивидуальной функции преобразования определяются по формулам 2, 3.

$$a_{0} = \frac{\sum_{j=1}^{m} U_{j} \sum_{j=1}^{m} X_{j}^{2} - \sum_{j=1}^{m} U_{j} X_{j} \sum_{j=1}^{m} X_{j}}{m \sum_{j=1}^{m} X_{j}^{2} - \left(\sum_{j=1}^{m} X_{j}\right)^{2}};$$
(2)

$$a_{1} = \frac{m \sum_{j=1}^{m} U_{j} X_{j} - \sum_{j=1}^{m} U_{j} \sum_{j=1}^{m} X_{j}}{m \sum_{j=1}^{m} X_{j}^{2} - \left(\sum_{j=1}^{m} X_{j}\right)^{2}}$$
(3)

6.3.3 Расчет основной приведенной погрешности провести, используя оперативную информацию для обработки результатов градуирования, представленную в таблице 4.

Таблица 4 – Оперативная инфор	рмация для обработки результатов градуирования		
Содержание оперативной информации	Числовые значения, формулы, указания		
1 Степень полинома	L = 1		
2 Коэффициент, учитывающий доверительную вероятность при определении основной погрешности	K = 1,96		
3. Нормирующее значение выходного	$N = U_{HOM} - U_{o}$		
сигнала	где $U_{\text{ном}}$ – номинальное значение выходного сигнала, B ; $U_{\text{о}}$ – начальное значение выходного сигнала, B		
4 .Указания по определению основной приведенной погрешности			
	где: $m = 11$ — количество градуировочных точек;		
	n = 2 — количество циклов градуирования;		
	i – номер цикла градуирования;		
	j – точка градуирования;		
	N — нормирующее значение выходного сигнала;		
	К – коэффициент, учитывающий доверительную		
	вероятность при определении допускаемой основной погрешности (К = 1,96);		
	x – величина перемещения штока (0-100) мм $U_{ji}^{(MB)}$ – значения выходных сигналов, B,		
	U_{j}^{pacq} — величина выходного сигнала, рассчитанная		
	по индивидуальной ГХ, В;		
	$\widetilde{D}_{o6p,\rho} = \frac{\sigma_{o6p,\rho}^2}{N_{\rho}^2}$ -приведенное значение дисперсии вы-		
	ходного сигнала, обусловленной ρ -м средством гра-		
	дуирования, для которого нормировано предельное значение погрешности $\Delta_{oбp,\rho}$		

- 6.3.4 Результаты расчета допускаемой основной погрешности занести в таблицу А.4 приложения А.
- 6.3.5 Значение основной приведенной погрешности должно находиться в пределах $\pm 1,2~\%$ для исполнения ЛТР-10, для остальных исполнений в пределах $\pm 0,8~\%$.

7 Оформление результатов поверки

7.1 Результаты поверки преобразователей оформить в соответствии с Приказом Министерство промышленности и торговли РФ от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Приложение А Формы таблиц для регистрации результатов поверки

Таблица А.1 - Результаты проверки маркировки, габаритных размеров датчиков и ме-

ханического хода штока

ханического хода штока		
Наименование параметра	Требование	Действительное состояние
Габаритные размеры, мм, не более:		
- длина корпуса:		
– ЛТР-10	48	
— ЛТР-25	63	
— ЛТР - 50	95	
– ЛТР-75	135	
- ЛТР-100	167	
– ЛТР-150	227	
- длина штока (без наконечника):		
— ЛТР-10	46	
- ЛТР-25	57	
– ЛТР-50	82	
– ЛТР-75	107	
– ЛТР-100	132	
– ЛТР-150	182	
Механический ход штока, мм:		
– ЛТР-10	12±1	
– ЛТР-25	27±1	
– ЛТР-50	52±1	
– ЛТР-75	77±1	
– ЛТР-100	102±1	
– ЛТР-150	152±1	

Таблица А.2 – Результаты определения номинального сопротивления

Наименование параметра	Требование	Действительное состояние
Номинальное сопротивление, кОм	5±1	

Таблица А.3 – Результаты определения градуировочной характеристики

Номер градуиро- вочной точки, j Значение перемещения, X_j , мм	Измеренное значение напряжения, В		
		прямой ход, U_{j}^{M}	обратный ход, $U_{j}^{\it E}$
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			

Таблица А.4 – Результаты расчета основной приведенной погрешности

Наименование параметра	Требование	Действительное значение
Значение основной приведенной погрешности датчика, %: — для исполнения ЛТР-10; — для исполнений ЛТР-25, ЛТР-50, ЛТР-75, ЛТР-100, ЛТР-150	±1,2 ± 0,8	