УТВЕРЖДАЮ

Заместитель директора ФГУП "ВНИИМС"
В.Н.Яншин
"
Метрипадра 2015 г.

Анализаторы элементные J200

Методика поверки

1.p.63554-16

Настоящая методика распространяется на анализаторы элементные J200 (далее - анализаторы), изготавливаемые компанией Applied Spectra, Inc., США, и устанавливает методы и средства их поверки. Анализаторы элементные J200 подлежат первичной (после ввода в эксплуатацию и после ремонта) и периодической поверке в процессе эксплуатации.

Интервал между поверками - 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.
 Таблица 1

Наименование операции	Номер пункта ме- тодики	Обязательность проведения операции при	
		выпуске из про- изводства и по- сле ремонта	периодической поверке
Внешний осмотр	6.1	да	да
Опробование:	6.2		
- определение разрешающей способности	6.2.1	да	да
 определение интенсивности регистриру- емого сигнала 	6.2.2	да	да
Определение метрологических характери- стик:	6.3		
 определение среднего квадратического отклонения (СКО) выходного сигнала 	6.3.1.	да	да ¹⁾
 определение показателей точности результатов измерений 	-	нет	да ²⁾

При отсутствии НД на МИ, утвержденной в установленном порядке по ГОСТ Р 8.563-09.

²⁾ При наличии НД на МИ.

 Операции проводят для каждого анализатора элементного J200 согласно требованиям руководства по эксплуатации (РЭ).

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки применяют следующие средства поверки:
- стандартные образцы состава сплава цинкового типа ЦА4М1 (комплект М158), ГСО 8046-94.

Все средства измерений, используемые при поверке, должны иметь свидетельства о поверке; стандартные образцы - паспорта.

Допускается применение других средств поверки с метрологическими характеристиками не хуже указанных.

3 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

3.1 При проведении поверки соблюдают следующие условия:

- температура окружающего воздуха, $^{\circ}$ C от 15 до 25 - атмосферное давление, кПа от 84 до 107 - относительная влажность воздуха, $^{\%}$ от 30 до 80 - напряжение питания переменного тока, В $220\pm^{15}/_{10}\%$

- частота переменного тока, Гц

50±1

 Подготовку к поверке элементного анализатора J200 выполняют в соответствии с руководством по эксплуатации (РЭ).

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 Требования безопасности должны соответствовать рекомендациям, изложенным в руководстве по эксплуатации на элементный анализатор J200.

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

5.1 К проведению поверки допускаются лица, имеющие опыт работы с элементным анализатором J200, изучившие руководство по эксплуатации и методику поверки, имеющие техническое образование.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре устанавливают:

- соответствие комплектности прибора требованиям РЭ и спецификации поставки оборудования;
 - отсутствие внешних повреждений, влияющих на работоспособность анализатора;
 - исправность механизмов и крепежных деталей;
 - четкость надписей на лицевой панели;
 - правильность размещения анализатора.

6.2 Опробование

При опробовании проверяют работоспособность анализатора, определяют разрешающую способность и интенсивность регистрируемого сигнала.

6.2.1 Проверка работоспособности

Включают прибор и подготавливают его к выполнению анализа в соответствии с требованиями РЭ. Перед началом поверки выдерживают анализатор во включенном состоянии в течение 30 минут для стабилизации системы.

Проверку работоспособности анализатора проводят путем выполнения анализа образца ГСО 8046-94 с индексом 1582 из комплекта M158.

Анализ выполняют однократно при следующих режимных параметрах (задаются при помощи программного обеспечения, управляющего работой анализатора):

- уровень мощности лазерного излучения 70 %;
- 20 последовательных импульсов (в режиме аккумулирования сигнала);
- размер пятна кратера 75 мкм;
- частота лазерных импульсов 10 Гц;
- временная задержка регистрации сигнала 1,5 мкс;
- измерения по шаблону 3 х 3 (9 точек) с шагом 0,6 мм.

Оценку работоспособности элементного анализатора проводят путем визуального контроля полученного спектра сигнала. Полученный спектр должен иметь четкие разрешенные эмиссионные линии матричного элемента (цинка) и основных примесных компонентов:

- характеристической линии меди Си3247 на длине волны 324.7 нм;
- характеристической линии алюминия А13961 на длине волны 396.1 нм.

При опробовании на приборе не должна появляться аварийная индикация и/или сообщение системы о возникших неисправностях.

6.2.2 Определение разрешающей способности

Выполняют анализ образца ГСО 8046-94 с индексом 1582 из комплекта М158 при условиях, определенных в п.6.2. Полученный результат сохраняют в виде файла исходных данных. При помощи программы обработки результатов анализа Aurora Data Analysis открывают сохраненный файл результатов и выделяют из полного спектра линии меди Си3247 и алюминия Al3961 с выводом их на печать в полноэкранном режиме. Производят оценку разрешающей способности по критерию FWHM (Full Width Half Maximum) путем измерения ширины пика (в единицах шкалы длины волны, нм) на 50% его высоты по амплитуде. При выполнении операции допускается выбор наиболее симметричного (максимально приближенным к гауссовому распределению) пика из девяти полученных в анализе.

Полученное значение разрешающей способности не должно превышать 0.25 нм для каждой аналитических линии

6.2.3 Определение интенсивности регистрируемого сигнала по аналитическим линиям меди Сu3247 и алюминия Al3961.

Определение интенсивности регистрируемого сигнала Cu3247 и Al3961 проводят по полученным в п. 6.2.2 результатам выполненного анализа образца ГСО 8046-94 с индексом 1582 из комплекта M158. Оценка производится путем вывода на экран в полном масштабе графического изображения пиков аналитических линий меди Cu3247 и алюминия Al3961 и определения амплитуды сигнала в единицах шкалы интенсивности (шкала Y). Точное значение интенсивности также можно определить, отметив курсором местоположение максимума пика на графике сигнала и в окне свойств будет отображаться точное значение сигнала и его положение по шкале длины волны. Прибор считается выдержавшим поверку, если полученные значения удовлетворяют требованиям, приведенным в таблице 2.

Таблипа 2

Элемент, длина волны (А)	Интенсивность (амплитуда пика сигнала)		
Си3247 (медь)	12000		
А13961 (алюминий)	60000		

6.3. Определение метрологических характеристик

6.3.1 Определение среднего квадратичного отклонения (СКО) выходного сигнала.

Проводят двенадцать последовательных анализов образца ГСО 8046-94 с индексом 1582 из комплекта М158 при условиях анализа, указанных в п.6.2. Каждый из проводимых анализов следует выполнять в новом месте на поверхности образца со смещением шаблона на расстояние 0.8 - 1 мм от места проведения предыдущего анализа. При выполнении данной операции расстояние от кромки образца до анализируемой области должно быть не менее 6 мм. Полученные результаты сохраняют в виде файлов исходных данных. При помощи Программы обработки результатов анализа Aurora Data Analysis открывают сохраненные файлы и определяют интегральные значения сигналов для аналитических линий Cu3247 и Al3961 с применением процедуры коррекции сигнала по фону (слева и справа от аналитического пика) в соответствии с руководством пользователя программного обеспечения Aurora Data Analysis. Из полученных двенадцати значений сигналов по каждому элементу отбрасывают результаты с наименьшим и наибольшим значением сигналов. По оставшимся десяти значениям рассчитывают относительное среднее квадратическое отклонение сигнала (σ) для аналитических линий меди Cu3247 и алюминия Al3961 по формуле

$$\sigma = \frac{100}{\overline{X}} \sqrt{\frac{\sum (X_i - \overline{X})^2}{n-1}},$$

где X_i - интегральное значение выходного сигнала при i-ом измерении;

n - число измерений (n = 10);

 \overline{X} - среднее арифметическое из "n" измерений.

Полученные значения σ не должны превышать

для меди Cu3247

10%.

для алюминия Al3961

20 %.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки анализаторов заносят в протокол.
- 7.2 Положительные результаты поверки анализаторов оформляют выдачей свидетельства в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке (утв. приказом Минпромторга России № 1815 от 02.07.2015 г.).
- 7.3 Анализаторы, не удовлетворяющие требованиям настоящих рекомендаций, к эксплуатации не допускаются. Анализаторы изымаются из обращения. Свидетельство о поверке изымают и выдают извещение о непригодности с указанием причин в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке (утв. приказом Минпромторга России № 1815 от 02.07.2015 г.).

7.4 После ремонта газоанализаторы подвергают поверке.

Начальник сектора ФГУП "ВНИИМС", к.х.н.

О.Л. Рутенберг