

Аппаратура геодезическая спутниковая ЮГ С-82

Методика поверки

MΠ AΠM 74-15

г. Москва, 2015 г.

2

1. Методика поверки

Настоящая методика поверки распространяется на аппаратуру геодезическую спутниковую ЮГ С-82 (далее – аппаратура), производства «South Surveying & Mapping Instrument CO., LTD», КНР и устанавливает методику её первичной и периодической поверки.

Интервал между поверками 1 год.

2. Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1.

$N_{\underline{0}}N_{\underline{0}}$	Наименование операции	Проведение операций при			
пункта		первичной поверке	периодической поверке		
8.1.	Внешний осмотр	Да	Да		
8.2.	Опробование	Да	Да		
8.3.	Определение абсолютной и средней квадратиче-	Да	Да		

	ской погрешностей измерений расстояний в режимах «Статика», «Быстрая статика»		
8.4.	Определение абсолютной и средней квадратиче- ской погрешностей измерений расстояний в ре- жиме «Кинематика в реальном времени (RTK)»	Да	Да
8.5.	Определение абсолютной и средней квадратиче- ской погрешностей измерений расстояний в ре- жиме «Дифференциальные кодовые измерения (DGPS)»	Да	Да

3. Средства поверки

При проведении поверки должны применяться эталоны, приведённые в таблице 2.

Таблица 2.

№ пункта	Наименование эталонов и их основные метрологические
документа	и технические характеристики
по поверке	
8.1	Эталоны не применяются
8.2	Эталоны не применяются
8.3-8.5	Фазовый светодальномер (тахеометр электронный) 1 разряда по ГОСТ Р 8.750-2011
8.3-8.4	Рулетка РЗНЗК по ГОСТ 7502-98

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики поверки.

4. Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы на аппаратуру, имеющие достаточные знания и опыт работы с ней.

5. Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации на аппаратуру, поверочное оборудование, правилам по технике безопасности, которые действуют на месте проведения поверки и правилам по технике безопасности при производстве топографо-геодезических работ ПТБ-88 (Утверждены коллегией ГУГК при СМ СССР 09.02.1989 г., № 2/21).

6. Условия проведения поверки

При проведении поверки должны соблюдаться следующие нормальные условия измерений:

- относительная влажность воздуха,%..... не более 80

3

- изменение температуры окружающей среды во время измерений, °С/чне более 2

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков и порывов ветра.

7. Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные рабоы:

- проверить наличие действующих свидетельств о поверке на средства поверки;
- аппаратуру и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;

8. Проведение поверки

8.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие аппаратуры следующим требованиям:

- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики аппаратуры;
- наличие маркировки и комплектности согласно требованиям эксплуатационной документации на аппаратуру.

8.2. Опробование

При опробовании должно быть установлено соответствие аппаратуры следующим требованиям:

- отсутствие качки и смещений неподвижно соединенных деталей и элементов аппаратуры;
- правильность взаимодействия с комплектом принадлежностей;
- работоспособность всех функциональных режимов;
- идентификационные данные программного обеспечения (далее ПО) должны соответствовать данным, приведённым в таблице 3.

Таблица 3.

			Таолиг	ia :
Идентификационное наименование ПО	«HeziCode»	«GIStar»	«InStar»	
Номер версии (идентификационный	1.05	1.02.150612	1.0	

Для идентификации ПО «HeziCode», установленного в приемник, необходимо включить приемник,

пооключиться посреоством оеспровоонои связи (виртуальный СОм-порт) к оекооеру. Появится информация о загрузке. В появившемся диалоговом окне загрузчика отображается наименование и версия ПО.

Для идентификации ПО «GIStar», установленного на контроллер, необходимо перейти во вкладку «About». В появившемся окне программы отображается наименование и версия ПО.

Для идентификации ПО «InStar», установленного на ПК, необходимо перейти во вкладку «About». В появившемся диалоговом окне программы отображается наименование и версия ПО.

8.3. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режимах «Статика», «Быстрая статика»

Абсолютная и средняя квадратическая погрешности измерений расстояний в режимах «Статика», «Быстрая статика» определяется измерением не менее двух линий линейного базиса, действительные длины которых расположены в диапазоне (0,1-3,0) км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса, и привести спутниковые антенны образцов к горизонтальной плоскости. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.

4

Включить аппаратуру и настроить её на сбор данных (измерений) в соответствующем режиме измерений, согласно требованиям руководства по эксплуатации.

Убедиться в нормальном ее функционировании и отсутствии помех приему сигналов со спутников. При наличии помех устранить их.

Провести одновременные измерения на образцах аппаратуры при условиях, указанных в таблице 4. Выключить аппаратуру согласно требованиям руководства по эксплуатации.

Выполнить обработку наблюдений с использованием штатного ПО к аппаратуре.

Абсолютная и средняя квадратическая погрешности измерений расстояний в режимах «Статика», «Быстрая статика» вычисляется по формуле:

$$\Delta_{1j} = S_j - S_{0j}$$
, где

 ΔI_{J} - значение абсолютной погрешности измерений расстояний, мм;

 S_{0} , - эталонное (действительное) значение j-й линии, мм;

S, - измеренное значение j-й линии, мм;

Полученное значение Δl_{ij} не должно превышать значений абсолютной погрешности и удвоенных значений средней квадратической погрешности, указанных в описании типа.

8.4. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режиме «Кинематика в реальном времени (RTK)»

Абсолютная погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)» определяется не менее чем 10-и кратным измерением линии линейного базиса, действительная длина которой расположена в диапазоне (0,1-3,0) км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса, и привести спутниковые антенны образцов к горизонтальной плоскости. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.

Включить аппаратуру и настроить её на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в нормальном ее функционировании и отсутствии помех приему сигналов со спутников. При наличии помех устранить их.

Провести одновременные измерения на образцах аппаратуры при условиях, указанных в таблице 4. Выключить аппаратуру согласно требованиям руководства по эксплуатации.

Абсолютная погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)» вычисляется по формуле:

$$\Delta_{2j} = S_j - S_{0j}$$
, где

 Δ_{2j} - значение абсолютной погрешности измерений расстояний, мм;

 S_0 - эталонное (действительное) значение ј-й линии, мм;

измеренное значение ј-й линии, мм;

За окончательный результат принять наибольшее из полученных значений $\Delta_{\scriptscriptstyle 2j}$.

Средняя квадратическая погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)» определяется по формуле:

$$m_{2j} = \sqrt{\frac{\sum (S_j - S_{0j})^2}{n}}, \varepsilon \partial e$$

m2j - значение средней квадратической погрешности измерений расстояний, мм;

 S_0 , - эталонное (действительное) значение j-й линии, мм;

У - измеренное значение ј-й линии, мм;

количество измерений ј-й линии.

Полученное значение Δ_{2j} не должно превышать значений абсолютной погрешности, указанных в описании типа.

Полученное значение m_{2j} не должно превышать удвоенных значений средней квадратической погрешности, указанных в описании типа.

8.5. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)»

Абсолютная и средняя квадратическая погрешности измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)» определяется не менее чем 10-и кратным измерением линии линейного базиса, действительная длина которой расположена в диапазоне (0,1-3,0) км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса, и привести спутниковые антенны образцов к горизонтальной плоскости. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.

Включить аппаратуру и настроить её на сбор данных (измерений) в режиме «Дифференциальные кодовые измерения (DGPS)» согласно требованиям руководства по эксплуатации.

Убедиться в нормальном ее функционировании и отсутствии помех приему сигналов со спутников. При наличии помех устранить их.

Провести одновременные измерения на образцах аппаратуры при условиях, указанных в таблице 4 Выключить аппаратуру, согласно требованиям руководства по эксплуатации

Выполнить обработку наблюдений по штатному ПО к аппаратуре.

Абсолютная погрешность измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)» вычисляется по формуле:

$$\Delta_{3j} = S_j - S_{0j}$$
, где

 $\Delta_{3/}$ - значение абсолютной погрешности измерений расстояний, мм;

- эталонное (действительное) значение ј-й линии, мм;

 S_{i} - измеренное значение ј-й линии, мм;

За окончательный результат принять наибольшее из полученных значений Δ_{3j} .

Средняя квадратическая погрешность измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)» вычисляется по формуле:

$$m_{3j} = \sqrt{\frac{\sum (S_j - S_{0j})^2}{n}} \ , \, \varepsilon \partial e$$

 m_{3j} - значение средней квадратической погрешности измерений расстояний, мм;

 $S_{0_{f}}$ - эталонное (действительное) значение j-й линии, мм;

 S_j - измеренное значение j-й линии, мм;

количество измерений ј-й линии.

6

Полученное значение Δ_{3j} не должно превышать значений абсолютной погрешности, указанных в описании типа.

Полученное значение m_{3j} не должно превышать удвоенных значений средней квадратической погрешности, указанных в описании типа.

Таблица 4

Режим измерений	Кол-во спут- ников, шт	Время изме- рений, мин	Интервал меж- ду эпохами, с.
Статика		30÷60	1
Быстрая статика		5÷15	1
Кинематика в реальном времени (RTK)	≥ 6		
Дифференциальные кодовые измерения (DGPS)»		0,05÷0,20	1

* - Поверка проводится при устойчивом закреплении аппаратуры над пунктами, открытом небосводе, отсутствии электромагнитных помех и многолучевого распространения сигналов спутников, а также при хорошей конфигурации спутниковых группировок.

9. Оформление результатов поверки

- 9.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 8 настоящей методики поверки с указанием числовых значений результатов измерений и их оценки по сравнению с допускаемыми значениями. Рекомендуемый образец протокола поверки приведен в Приложении.
- 9.2. При положительных результатах поверки аппаратура признается годной к применению, и на неё выдается свидетельство о поверке установленной формы с указанием фактических результатов определения метрологических характеристик. Знак поверки наносится на свидетельство о поверке в виде наклейки, и (или) оттиска поверительного клейма.
- 9.3. При отрицательных результатах поверки аппаратура признается непригодной к применению, и на неё выдается извещение о непригодности установленной формы с указанием основных причин.

Инженер ООО «Автопрогресс-М»

Скрипкина Т.А.

7

ПРИЛОЖЕНИЕ (Рекомендуемый образец протокола поверки)

ПРОТОКОЛ №

Дата и время проведения поверки:

Условия проведения поверки:

Внешний осмотр:

Требования	Результаты поверки
отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики аппаратуры	
наличие маркировки и комплектности согласно требованиям эксплуатационной документации на аппаратуру	

Опробование:

Требования	Результаты поверки
отсутствие качки и смещений неподвижно соединенных деталей и элементов аппаратуры	
правильность взаимодействия с комплектом принадлежностей	
работоспособность всех функциональных режимов	
наименование ПО, номер его версии	

Результаты поверки в режиме «Статика»:		
	Заявляемое тре-	Заявляемое требо-

	ое значе- виса, мм		ат изме- й, мм		шность ний, мм	ной погр	абсолют- решности, пее, мм	ческой п	квадрати- огрешно- более, мм
в плане	по высоте	в плане	по высоте	в плане	по высоте	в плане	по высоте	в плане	по высоте

Результаты поверки в режиме «Быстрая статика»:

	ное зна- зиса, мм		ат изме- й, мм		шность ний, мм	бование ной погр	емое тре- абсолют- решности, пее, мм	вание уд средней п ческой п	ое требо- военной квадрати- огрешно- олее, мм
в плане	по высоте	в плане	по высоте	в плане	по высоте	в плане	по высоте	в плане	по высоте

Результаты поверки в режиме «Кинематика в реальном времени»:

Эталонное значение	Результат измере-	Погрешность измере-	Заявляемое требование аб-	
базиса, мм	ний, мм	ний, мм	солютной погрешности, не	

8

						более	, MM
в плане	по высоте						

Средняя квадратическая погрешность измерений, в плане, мм - ...

Заявляемое требование удвоенной средней квадратической погрешности, в плане, мм - ...

Средняя квадратическая погрешность измерений, по высоте, мм - ...

Заявляемое требование удвоенной средней квадратической погрешности, по высоте, мм - ...

Результаты испытаний в режиме «Дифференциальные кодовые измерения (DGPS)»:

Эталонное значение базиса, мм		Результат измерений, мм		Погрешность измерений, мм		Заявляемое требование аб- солютной погрешности, не более, мм	
в плане	по высоте	в плане	высоте	в плане	по высоте	в плане	по высоте

Средняя квадратическая погрешность измерений, в плане, мм - ...

Заявляемое требование удвоенной средней квадратической погрешности, в плане, мм - ...

Средняя квадратическая погрешность измерений, по высоте, мм - ...

Заявляемое требование удвоенной средней квадратической погрешности, по высоте, мм - ...