

Государственная система обеспечения единства измерений

Система измерительно-управляющая технологическим процессом нагрева слитков на тепловом щите № 4 отделения нагревательных колодцев обжимного цеха прокатного производства АО «ЕВРАЗ ЗСМК»

МЕТОДИКА ПОВЕРКИ

МП 264-16

Содержание

1	Общие положения	3
2	Операции поверки	4
3	Средства поверки	5
4	Требования к квалификации поверителей	5
5	Требования безопасности	5
6	Условия поверки	6
7	Подготовка к поверке	7
8	Проведение поверки	7
9	Оформление результатов поверки	14
	Приложение А. Метрологические характеристики измерительных каналов ИУС	15
	Приложение Б. Образец оформления протокола поверки	38
	Приложение В. Образец приложения к свидетельству о поверке	39
	Приложение Г. Перечень ссылочных нормативных документов	40

1 Общие положения

- 1.1 Настоящая методика поверки распространяется на систему измерительноуправляющую технологическим процессом нагрева слитков на тепловом щите № 4 отделения нагревательных колодцев обжимного цеха прокатного производства АО «ЕВРАЗ ЗСМК» (далее – ИУС) и устанавливает методы и средства ее первичной и периодической поверок.
- 1.2 Поверке подлежит ИУС в соответствии с перечнем измерительных каналов (ИК), приведенным в приложении А.
- 1.3 Первичную поверку ИУС выполняют перед вводом в эксплуатацию и после ремонта.
- 1.4 Периодическую поверку ИУС выполняют в процессе эксплуатации через установленный интервал между поверками.
 - 1.5 Периодичность поверки (интервал между поверками) ИУС 1 год.
- 1.6 Измерительные компоненты ИУС поверяют с интервалом между поверками, установленным при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки ИУС, поверяется только этот компонент и поверка ИУС не проводится.
- 1.7 При замене измерительных компонентов на однотипные или на компоненты с аналогичными техническими и метрологическими характеристиками подвергают поверке только те ИК, в которых проведена замена измерительных компонентов. В этом случае собственником ИУС должен быть оформлен акт об изменениях, внесенных в ИУС, являющийся неотъемлемой частью описания типа ИУС для Федерального информационного фонда по обеспечению единства измерений.
- 1.8 Допускается применение измерительных компонентов аналогичных типов, прошедших испытания для целей утверждения типа с аналогичными техническими и метрологическими характеристиками.
- 1.9 При модернизации ИУС путем введения новых измерительных каналов должны быть проведены их испытания в целях утверждения типа.
- 1.10 В случае замены отдельных компонентов APM (за исключением жёсткого диска) проводят проверку функционирования ИУС в объёме раздела 8.5 настоящей методики поверки.
- 1.11 В случае обновления программного обеспечения ИУС, расширения/модификации его функций проводится анализ изменений, внесённых в программное обеспечение. Если внесённые изменения могут повлиять на метрологически значимую часть программного обеспечения, то проводят испытания ИУС в целях утверждения типа.

В тексте приняты следующие сокращения:

АРМ - автоматизированное рабочее место;

ИК – измерительный канал;

ИУС – измерительно-управляющая система;

МП – методика поверки;

МХ - метрологические характеристики;

ПО – программное обеспечение;

СИ - средство измерений;

ФВ – физическая величина.

2. Операции поверки

2.1 При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1

					и при поверке	
Наименование операции	Номер пункта методики поверки	при вводе в эксплуата- цию	при вводе нового ИК	после ремонта ИК	после переустанов- ки ПО или замены компьютера APM	периоди- ческой
1 Рассмотрение документации	8.1	да	да*	да*	да*	да*
2 Внешний осмотр	8.2	да	нет	нет	да	да
3 Проверка условий эксплуатации компонентов ИУС	8.3	да	да*	нет	нет	да
4 Опробование	8.4	да	да	да	да	да
5 Подтверждение соответствия ПО ИК ИУС	8.5	да	да*	нет	да	да
6 Определение погрешности измерений и синхронизации времени	8.6	да	нет	нет	да*	да
7 Проверка метрологических характеристик измерительных каналов ИУС	8.7	да	да*	да*	да	да

в объеме вносимых изменений

3 Средства поверки

- 3.1 При проведении поверки применяют основные и вспомогательные средства поверки, перечень которых приведен в таблице 2.
- 3.2 Средства поверки должны иметь действующие свидетельства о поверке или оттиски поверительных клейм.

Таблина 2- Средства поверки

Uauranananua u	Основные метрологические характеристики						
Наименование и тип средства поверки	Диапазон измерений, номинальное значение	Погрешность, класс точности цена деления					
Мультиметр цифровой APPA-107	Диапазон измерений напряжения переменного тока U_от 0,1 до 750 В Диапазон измерений частоты f от 1 до 200 Гц Диапазон измерений напряжения постоянного тока U= от 1 до 200 В	$\Delta = \pm (0,007 \cdot U_{\sim} + 5 B)$ $\Delta = \pm (0,0001 \cdot f + 0,1 \Gamma u)$ $\Delta = \pm (0,0006 \cdot U_{=} + 0,1 B)$					
Калибратор электрических сигналов СА71	Диапазон воспроизведения сигналов силы постоянного тока от 0 до 24 мА Диапазон воспроизведения напряжения постоянного тока от 0 до 110 мВ	Пределы допускаемой абсолютной погрешности ± (0,025 %·X+3 мкА). Пределы допускаемой абсолютной погрешности ± (0,02 %·X+15 мкВ)					
Термогигрометр Ива-6А-Д	Диапазон измерений относительной влажности от 0 до 98 % Диапазон измерений температуры от 0 до +60 °C Диапазон измерений давления от от 300 до 1100 гПа	$\delta = \pm 2 \%$ $\Delta = \pm 0.3 \text{ °C}$ $\Delta = \pm 2.5 \text{ rΠa}$					
Радиочасы МИР РЧ-02	Период формирования импульса PPS и временного кода 1 с, пределы допускае погрешности синхронизации переднего PPS со шкалой координированного времения пределатированного времения пределатирования пределатирован	емой абсолютной о фронта выходного импульса					

Примечания

2) Х – значение измеряемой или воспроизводимой величины, деленной на 100 %;

4 Требования к квалификации поверителей

4.1 Поверка ИУС должна выполняться специалистами, аттестованными в качестве поверителей средств измерений, имеющими удостоверение на право работы с напряжением до 1000 В (квалификационная группа по электробезопасности не ниже третьей) и освоившими работу с ИУС.

5 Требования безопасности

5.1 При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:

¹⁾ В таблице приняты следующие обозначения: δ – относительная погрешность; Δ - абсолютная погрешность;

³⁾ При проведении поверки допускается замена указанных средств измерений аналогичными, обеспечивающими определение (контроль) метрологических характеристик ИК ИУС с требуемой точностью измерений

- ГОСТ ІЕК МЭК 60950-1-2011 «Оборудование информационных технологий,
 Требования безопасности. Ч.1. Общие требования»;
 - «Правила устройств электроустановок», раздел I, III, IV;
 - «Правила технической эксплуатации электроустановок потребителей»;
- «Правила по охране туда при эксплуатации электроустановок» (приложение к приказу Министерства труда и социальной защиты Российской Федерации от 24.07.2013
 № 328н);
 - СНиП 3.05.07-85 «Системы автоматизации»;
- РИЦ178.00-ИЭ.01 ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Прокатное производство. Обжимной цех. Отделение нагревательных колодцев. Автоматизированная система контроля и управления параметрами технологического процесса нагрева слитков на теплощите № 4. Руководство пользователя;
- РИЦ178.00-ПА ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Прокатное производство. Обжимной цех. Отделение нагревательных колодцев. Автоматизированная система контроля и управления параметрами технологического процесса нагрева слитков на теплощите № 4. Описание программного обеспечения;
 - Эксплуатационная документация на компоненты ИУС.

6 Условия поверки

6.1 Эталонным средствам измерений, используемым при проведении поверки, должны быть обеспечены следующие условия:

а) температура окружающей среды, °С	от +5 до +25;
б) атмосферное давление, кПа	от 84 до 106,7;
в) относительная влажность воздуха, %	от 30 до 80 (при +25 °C);
г) напряжение питания переменного тока, В	от 198 до 242;
д) частота питающей сети, Гц	от 49,6 до 50,4
е) напряжение питания постоянного тока, В	от 21,6 до 26,4.
Условия эксплуатации:	
1. Для комплексных компонентов;	
а) температура окружающей среды, °С	от +5 до +35;
б) атмосферное давление, кПа	от 84 до 106,7;
в) относительная влажность воздуха, %	от 30 до 80 (при +25 °C);
г) напряжение питания переменного тока, В	от 198 до 242;
д) частота питающей сети, Гц	от 49,6 до 50,4
е) напряжение питания постоянного тока, В	от 21,6 до 26,4.
2. Для АРМ ИУС:	
а) температура окружающей среды, °С	от +5 до +35;
б) атмосферное давление, кПа	от 84 до 106,7;
в) относительная влажность воздуха, %	от 30 до 80 (при +25 °C);
г) напряжение питания переменного тока, В	от 198 до 242;
д) частота питающей сети, Гц	от 49,6 до 50,4.
3 The hamphage hely a cheaviourly component	OR HVC:

- 3. Для измерительных и связующих компонентов ИУС:
- а) температура окружающей среды, °С

1) преобразователи давления

измерительные от +5 до +60;

2) телескопы радиационные для пирометров

РАПИР ТЕРА-50 от +15 до +80;

3) датчики температуры:

-погружаемая часть

-контактные головки

б) атмосферное давление, кПа

в) относительная влажность воздуха, %

г) напряжение питания постоянного тока, В

от 0 до +1100 от +5 до +40; от 84 до 106,7;

от 30 до 90 (при +25 °C);

от 21,6 до 26,4.

7 Подготовка к поверке

7.1 На поверку ИУС представляют следующие документы:

– Система измерительно-управляющая технологическим процессом нагрева слитков на тепловом щите № 4 отделения нагревательных колодцев обжимного цеха прокатного производства АО «ЕВРАЗ ЗСМК». Паспорт;

- РИЦ178.00-ИЭ.01 ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Прокатное производство. Обжимной цех. Отделение нагревательных колодцев. Автоматизированная система контроля и управления параметрами технологического процесса нагрева слитков на теплощите № 4. Руководство пользователя;
- РИЦ178.00-ПА ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Прокатное производство. Обжимной цех. Отделение нагревательных колодцев. Автоматизированная система контроля и управления параметрами технологического процесса нагрева слитков на теплощите № 4. Описание программного обеспечения;
 - свидетельства о поверке средств измерений, входящих в состав ИУС;
- свидетельство о предыдущей поверке ИУС (при выполнении периодической поверки);
 - эксплуатационную документацию на ИУС и ее компоненты;
- эксплуатационную документацию на средства измерений, применяемые при поверке ИУС.
- 7.2 Перед выполнением операций поверки необходимо изучить настоящий документ, эксплуатационную документацию на поверяемую ИУС и её компоненты.
- 7.3 Непосредственно перед проведением поверки необходимо подготовить средства поверки к работе в соответствии с их эксплуатационной документацией.

8 Проведение поверки

- 8.1 Рассмотрение документации
- 8.1.1 Проверяют наличие следующей документации:
- Система измерительно-управляющая технологическим процессом нагрева слитков на тепловом щите № 4 отделения нагревательных колодцев обжимного цеха прокатного производства АО «ЕВРАЗ ЗСМК». Паспорт;
- РИЦ178.00-ИЭ.01 ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Прокатное производство. Обжимной цех. Отделение нагревательных колодцев. Автоматизированная система контроля и управления параметрами технологического процесса нагрева слитков на теплощите № 4. Руководство пользователя;
- РИЦ178.00-ПА ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Прокатное производство. Обжимной цех. Отделение нагревательных колодцев. Автоматизированная система контроля и управления параметрами

технологического процесса нагрева слитков на теплощите № 4. Описание программного обеспечения;

- свидетельство о предыдущей поверке ИУС (при проведении периодической поверки);
 - документы, удостоверяющие поверку средств измерений, входящих в состав ИУС;
 - эксплуатационная документация на ИУС и ее компоненты;
- эксплуатационная документация на средства измерений, применяемые при поверке ИУС.
- 8.1.2 Проверяют перечень измерительных каналов, представленных на поверку, в соответствии с перечнем, приведенным в паспорте на ИУС и в приложении А настоящей МП. Эксплуатационная документация на средства измерений, применяемые при поверке ИУС, должна содержать информацию о порядке работы, их технических и метрологических характеристиках.

Результат проверки положительный, если вся вышеперечисленная документация в наличии, перечень измерительных каналов соответствует перечню, приведенному в паспорте на ИУС и в приложении А настоящей МП, все средства поверки имеют документально подтвержденную пригодность для использования в операциях поверки, все компоненты ИУС имеют действующие свидетельства о поверке.

8.2 Внешний осмотр

- 8.2.1 При внешнем осмотре проверяют соответствие ИУС нижеследующим требованиям:
- соответствие комплектности ИУС перечню, приведенному в паспорте и в таблице
 А.1 приложения А настоящей МП;
- отсутствие механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- отсутствие обрывов и нарушения изоляции кабелей и жгутов, влияющих на функционирование ИУС;
 - наличие и прочность крепления разъёмов и органов управления;
- отсутствие следов коррозии, отсоединившихся или слабо закрепленных элементов схемы.
- 8.2.2 Внешним осмотром проверяют соответствие количества и месторасположение APM и контроллеров программируемых (ПЛК), приведенным в эксплуатационной документации.

Результат проверки положительный, если количество и месторасположение APM и ПЛК соответствует эксплуатационной документации на ИУС. При оперативном устранении недостатков, замеченных при внешнем осмотре, поверка продолжается по следующим операциям.

8.3 Проверка условий эксплуатации компонентов ИУС

8.3.1 Проводят сравнение фактических климатических условий в местах, где размещены компоненты ИУС, а также параметров сети их питания с показателями, приведенными в разделе 6 настоящей МП и в эксплуатационной документации на эти компоненты.

Результат проверки положительный, если фактические условия эксплуатации каждого компонента ИУС удовлетворяют рабочим условиям применения, приведенным в разделе 6 настоящей МП и в эксплуатационной документации.

8.4 Опробование

- 8.4.1 Непосредственно перед выполнением экспериментальных исследований необходимо подготовить ИУС и СИ к работе в соответствии с их эксплуатационной документацией.
- 8.4.1.1 Перед опробованием ИУС в целом необходимо выполнить проверку функционирования её компонентов.
- 8.4.1.2 При проверке функционирования измерительных и комплексных компонентов ИУС проверяют работоспособность индикаторов, отсутствие кодов ошибок или предупреждений об ошибках, авариях.
 - 8.4.1.3 При опробовании линий связи проверяют:
 - наличие сигнализации о включении в сеть технических средств ИУС;
 - поступление информации по линиям связи;
 - наличие сигнализации об обрыве линий.
- 8.4.1.4 При опробовании ИУС проводят первичное тестирование ИУС средствами программного обеспечения АРМ (опрос первичных измерительных преобразователей, контроллеров; установление связи с компонентами и оборудованием ИУС, просмотр технологических экранных форм системы и сообщений в журнале сообщений, ввод и корректировка данных с клавиатуры с визуальным контролем правильности и полноты вводимой информации и т.д.).
- 8.4.1.5 Мониторы APM должны быть включены. Исправность клавиатуры и манипулятора мышь APM оценивают, выполнив переключение между экранными формами ИУС.
- 8.4.1.6 При проверке функционирования ИУС с АРМ проверяют выполнение следующих функций:
 - измерение и отображение значений параметров технологического процесса;
 - измерение и отображение текущих значений даты и времени.

8.4.2 Проверка функционирования ИУС с АРМ

На APM 1, APM 2 проверяют наличие экранных форм в соответствии с инструкцией по эксплуатации РИЦ178.00-ИЭ.01. Проверяют отображение текущих значений технологических параметров и информации о ходе технологического процесса, текущих значений даты и времени, возможность отображения в реальном масштабе времени технологических параметров в виде исторического тренда.

Результат проверки положительный, если по всем ИК ИУС (перечень ИК приведен в приложении А настоящей МП) на экранных формах отображаются текущие значения параметров технологического процесса в установленных единицах, даты и времени, и результаты измерений находятся в заданных диапазонах; осуществляется графическое отображение выбранных параметров в реальном масштабе времени.

- 8.5 Подтверждение соответствия программного обеспечения ИУС
- 8.5.1 Проверка идентификационных данных программного обеспечения ИУС

Проверку идентификационных данных ПО ИУС проводят в процессе штатного функционирования. Прикладное ПО ИУС включает программное обеспечение, функционирующее на APM, и программное обеспечение контроллеров программируемых SIMATIC S7-300 (ZG1 и ZG2), являющееся метрологически значимой частью ПО ИУС.

Проверку идентификационного наименования проекта ПО контроллеров программируемых SIMATIC S7-300 (ZG1 и ZG2) (метрологически значимой части ПО ИУС) проводят с использованием программатора (переносной компьютер с установленным пакетом ПО SIMATIC PCS7 (система управления процессами SIEMENS), системой программирования STEP 7) и адаптера USB/MPI.

Проверяют следующие идентификационные данные метрологически значимой части ПО ИУС (ПО контроллеров):

идентификационное наименование проектов.

Идентификационное наименование программного обеспечения
Для контроллера SIMATIC S7-300 (ZG1) - проект: «TS4_zagruz»
Для контроллера SIMATIC S7-300 (ZG2) - проект: «TS4_zagruz»

Результаты проверки положительные, если идентификационное наименование метрологически значимой части ПО ИУС соответствует значению, приведенному в описании типа на ИУС, паспорте и 8.5.1 настоящей МП.

8.5.2 Проверка защиты ПО от несанкционированного доступа

Проверку защиты ПО ИУС от несанкционированного доступа проводят на физическом и программном уровне. На физическом уровне проверяют ограничение доступа к запоминающим устройствам ИУС и наличие замков на дверях шкафов, в которых установлены модули контроллеров программируемых и системные блоки АРМ.

Результат проверки положительный, если на дверях шкафов имеются замки.

На программном уровне проверку защиты ПО АРМ и данных от несанкционированного доступа проводят следующим образом:

- проверяют наличие средств защиты (обнаружение и фиксацию событий, подлежащих регистрации, в журнале сообщений);
- проверяют корректность реализации управления доступом пользователя к ПО APM и данным при вводе неправильных идентификационных данных пользователя (при вводе неверного пароля должно появиться окно с сообщением);
- проверяют соответствие полномочий пользователей, имеющих различные права доступа.

Результат проверки положительный, если осуществляется авторизованный доступ к выполнению функций ПО APM.

8.6 Определение погрешности синхронизации и измерений времени

- 8.7.1 АРМ поочередно переводят в режим отображения/настройки времени АРМ (текущее системное время). Устанавливается соединение с радиочасами МИР РЧ-02.00 нажатием кнопки «Соединить» на вкладке «Конфигурация» программы «КОНФИГУРАТОР РАДИОЧАСОВ МИР РЧ-02» (далее конфигуратора). На вкладке «Синхронизация» конфигуратора фиксируют следующие значения:
- «ВРЕМЯ UTС» время в очередной метке времени, пришедшей от радиочасов МИР РЧ-02.00;

- «Время ПК» локальное время APM в момент прихода метки времени от радиочасов МИР РЧ-02.00;
- «Разница» разница между локальным временем APM и временем UTC из очередной метки времени.

Примечание – Разница вычисляется без учёта количества часов.

Результат проверки положительный, если:

- отличие показаний APM от значения астрономического времени не превышает \pm 5 с (привязка к Государственной шкале единого времени).
 - 8.7 Проверка метрологических характеристик измерительных каналов ИУС
- 8.7.1 Метрологические характеристики (МХ) ИК ИУС определяют расчетноэкспериментальным способом (согласно МИ 2439). Проверку метрологических характеристик компонентов ИУС: первичных измерительных преобразователей (ПИП), модулей аналогового ввода контроллеров, выполняют экспериментально в соответствии с утвержденной методикой поверки на каждый тип СИ.

МХ измерительных каналов рассчитывают по МХ компонентов ИУС в соответствии с методикой, приведенной в разделе 8.7.4 настоящей МП. Допускается не проводить расчет погрешности ИК ИУС при условии, что подтверждены МХ компонентов ИК ИУС. Результаты проверки МХ ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей МП.

- 8.7.2 Проверка метрологических характеристик компонентов ИК ИУС
- 8.7.2.1 Метрологические характеристики измерительных и комплексных компонентов ИУС принимают равными значениям, приведенным в эксплуатационной документации (паспорт, формуляр и др.) СИ при наличии на них свидетельств о поверке.
- 8.7.2.2 Значения основной погрешности компонента ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей МП.
- 8.7.3 Исходные допущения для определения погрешности измерительных каналов ИУС

Погрешности компонентов ИУС относятся к инструментальным погрешностям.

Факторы, определяющие погрешность, - независимы.

Погрешности компонентов ИУС – не коррелированны между собой.

Законы распределения погрешностей компонентов ИУС – равномерные.

- 8.7.4 Методика расчета основной погрешности измерительных каналов ИУС
- 8.7.4.1 При расчете оценивают основную погрешность ИК следующим образом:

Для ИК расхода, в которых ПИП являются расходомеры, погрешность нормируют в относительной форме. Погрешность ИК температуры нормируют в абсолютной форме. Для ИК, в которых ПИП являются преобразователи давления, погрешность нормируют в приведенной форме.

1) Границы основной абсолютной погрешности ИК температуры Δ_{HK_och} , °C, определяют исходя из состава ИК ИУС по формуле (1):

$$\Delta_{HK \quad och} = \Delta_{\Pi H\Pi} + \Delta_{K} + \Delta_{sc}, \tag{1}$$

где $\Delta_{n\mu n}$ – абсолютная погрешность первичных измерительных преобразователей, °С;

 Δ_{K} – абсолютная погрешность контроллера, °C;

 Δ_{nc} - абсолютная погрешность линий связи, °С.

Примечание:

Погрешность Δ_{RC} определяется потерями в линиях связи. Между измерительными и комплексными компонентами линии связи (ЛС) построены из кабелей контрольных и/или кабелей управления. Параметры линий связи удовлетворяют требованиям ГОСТ 18404.0 и ГОСТ 26411. Длина линий связи небольшая, входное сопротивление контроллера велико, поэтому потери в ЛС пренебрежимо малы. Между комплексными и вычислительными компонентами построен цифровой канал связи. Применены сетевые технологии Ethernet, Profibus DP. Передача данных по каналам связи Ethernet, Profibus DP имеет класс достоверности II и относится к S1 классу организации передачи (в соответствии с ГОСТ Р МЭК 870-5-1). Погрешность линий связи во всех ИК принимаем равной нулю.

Для расчета погрешности ИК по формуле (2) погрешность компонента ИК ИУС переводят в абсолютную форму Δ , ед. Φ В, для случая ее представления в приведенной форме по формуле (2):

$$\Delta = \gamma \cdot \frac{X_B - X_H}{100} \ . \tag{2}$$

где X_B и X_H – верхний и нижний пределы измерений компонента ИК ИУС, единица измерений.

2) Границы основной относительной погрешности ИК расхода δ_{HK_och} , % определяют (в соответствии с РМГ 62), исходя из состава ИК ИУС по формуле (3):

$$\delta_{HK} = K \cdot \sqrt{\delta_{\Pi H\Pi}^2 + \delta_K^2 + \delta_{\eta C}^2}, \qquad (3)$$

где K = 1,2;

 $\delta_{\it ПИП}$ – относительная погрешность первичных измерительных преобразователей, %;

 $\delta_{{\mbox{\scriptsize K}}}$ – относительная погрешность контроллера, %;

 $\delta_{\it ЛC}$ – относительная погрешность линии связи, %.

Принимаем $\delta_{DC} = 0$.

Для расчета погрешности ИК по формуле (3) погрешность компонента ИК ИУС переводят в относительную форму δ , %, для случая ее представления в абсолютной или приведенной формах по формуле (4):

$$\delta = \frac{\Delta}{X_{HOM}} \cdot 100 = \gamma \cdot \frac{X_B - X_H}{X_{HOM}} \,, \tag{4}$$

где Δ — пределы допускаемой абсолютной погрешности компонента ИК ИУС, единица измерений;

 γ — пределы допускаемой приведенной погрешности, нормированной для диапазона измерений компонента ИК ИУС, %;

 X_B, X_H — верхний и нижний пределы диапазона измерений компонента ИК ИУС (в тех же единицах, что и X_{max});

Примечание — Если приведенная погрешность γ нормирована для верхнего предела измерений, то $X_H = 0$.

 $X_{\scriptscriptstyle non}$ — номинальное значение измеряемой величины, для которой определяются границы погрешности измерений, единица измерений.

В соответствии с ГОСТ 8.508 относительную погрешность вычисляют в точках X_{nam} , соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений и выбирают максимальное значение (i=1,..., 5).

Для модулей аналогового ввода контроллеров, погрешность которых нормирована в приведенной форме, необходимо определить значение силы тока, соответствующего номинальному значению. Расчёт значения силы тока $I_{\text{номі}}$, мА, соответствующего номинальному значению измеряемой величины $X_{\text{помі}}$, единица измерений, проводят для диапазона входного сигнала модуля (4–20) мА по формуле (5):

$$I_{\text{HOMI}} = \frac{D_{\text{CHITHARIA}} \cdot X_{\text{HOMI}}}{D_{\text{deB}}} + 4 \,, \tag{5}$$

где $D_{cuгнала}$ — разница между верхним и нижним пределами диапазона входного сигнала модуля ((4-20) мА), мА;

 $D_{\Phi B}$ – разница между верхним и нижним пределами диапазона измерений ПИП, (в тех же единицах, что и $X_{\text{номi}}$).

Примечание — Числовые значения пределов диапазонов измерений преобразователей приведены в эксплуатационной документации (паспорт, руководство). Значение напряжения постоянного тока на выходе преобразователей термоэлектрических — в соответствии с ГОСТ Р 8.585.

- 3) Границы основной приведенной погрешности ИК давления γ_{HK_ocn} , %, определяют следующим образом:
- а) переводят погрешность компонентов ИК из приведенной формы в относительную форму по формуле (4);
- б) относительную погрешность ИК вычисляют по формуле (3) в соответствии с ГОСТ 8.508 в точках X_{max} , соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений;
- в) переводят значения погрешности ИК, соответствующие пяти точкам диапазона, из относительной формы в приведенную по формуле (6):

$$\gamma_{i} = \frac{\delta_{HK_och} \cdot X_{Hom}}{X_{R} - X_{H}} \,. \tag{6}$$

Из пяти полученных выбирают максимальное значение и приписывают погрешности ИК.

Рассчитанное (фактическое) значение погрешности ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей МП.

Результаты проверки положительные, если фактические значения основной погрешности измерительных каналов не превышают границ допускаемых погрешностей, приведённых в таблице A.1 приложения A настоящей методики поверки.

9 Оформление результатов поверки

- 9.1 Результаты поверки оформляют протоколом по форме, приведенной в приложении Б настоящей МП.
- 9.2 При положительных результатах поверки ИУС оформляют свидетельство о поверке. Состав и метрологические характеристики измерительных каналов ИУС приводят в Приложении к свидетельству о поверке по форме, приведенной в приложении В настоящей методики поверки. Каждая страница Приложения к свидетельству о поверке должна быть заверена подписью поверителя. Знак поверки наносят на свидетельство о поверке.
- 9.3 При положительных результатах первичной поверки (после ремонта или замены компонентов ИУС на однотипные поверенные), проведённой в объёме проверки в части вносимых изменений, оформляют новое свидетельство о поверке ИУС при сохранении без изменений даты очередной поверки.
- 9.4 Допускается на основании письменного заявления собственника ИУС проведение поверки отдельных измерительных каналов из перечня, приведённого в описании типа ИУС, с обязательным указанием в Приложении к свидетельству о поверке информации о количестве и составе поверенных каналов.
- 9.5 Отрицательные результаты поверки оформляют извещением о непригодности. Измерительные каналы ИУС, прошедшие поверку с отрицательным результатом, не допускаются к использованию.

Приложение А (обязательное)

Метрологические характеристики ИК ИУС

Таблица А.1- Метрологические характеристики ИК ИУС

Но- мер ИК		Диапазон	Средства измерений (СИ), вхо	одящие в сост	гав ИК ИУС	Основная погрешность ИК	
	Наименова- ние ИК ИУС	измерений физической величины, ед. измерений	Наименование, тип СИ, заводской №	Регистрационный номер *	Пределы допускаемой основной погрешности СИ	Фактическая погрешность	Границы допускаемой погрешности
1	2	3	4	5	6.	7	8
	Расход от 1500 смешанного газа 10/1 м ³ /ч		Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-PN05-9391207	30883-05	γ=±(0,0029·r+ +0,071) %		
1		панного до 5000 сигналов SM 331	U.J.			γ=±0,8 %	
			15772-11	γ=±0,5 %			
2	Расход инжекти- рующего	от 700 до 2000	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120164	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 10/1	M ² /tr		15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
3	Расход смешанного газа 10/2	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-PN05-9391208	30883-05	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
	1 a 3 a 10/2	м /ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1270	15772-11	γ=±0,5 %		
4	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120163	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 10/2	М /Ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1270	15772-11	γ=±0,5 %		
5	Расход смешанного газа 10/3	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-PN05-9391209	30883-05	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
		м/ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1270	15772-11	γ=±0,5 %		
6	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120162	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 10/3	М /Ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1270	15772-11	γ=±0,5 %		
7	Давление смешанного газа ТЩ4, т. 1	от 0 до 1000 кгс/м ²	Преобразователь давления измерительный SITRANS P210 мод. 7MF1566-3AA00-1AA1 № LKK-F202-510-01-0004	51587-12	γ=±0,25 %		γ=±0,6 %
		KI C/M	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1270	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
8	Давление инжекти- рующего	от 0 до 10 кгс/см ²	Преобразователь давления измерительный SITRANS P220 мод. 7MF1567-3CA00-1AA1 № LKK-F112-545-04-0002	51587-12 γ=±0,25 %	γ=±0,25 %		γ=±0,6 %
	воздуха ТЩ4, т. 1	I PARCE III	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1270	15772-11	γ=±0,5 %		
9	Расход смешанного газа 10/4	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-PN05-9391210	30883-05	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
	1'a3a 10/4	М /Ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1139	15772-11	γ=±0,5 %		
0	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120161	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 10/4	м /ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1139	15772-11	γ=±0,5 %		
1	Расход смешанного газа 11/1	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-C015-9071433	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
	1'a3a 11/1	М /4	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1139	15772-11	γ=±0,5 %		
2	Расход инжекти- рующего воздуха 11/1	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120160	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
		м /ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1139	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
13	Расход смешанного газа 11/2	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-S923-9477738	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
	327.00	70.00	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1139	15772-11	γ=±0,5 %		
14	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120159	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 11/2	ka 11/2	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1139	15772-11	γ=±0,5 %		
15		от 0 до 10 кгс/см²	Преобразователь давления измерительный SITRANS P220 мод. 7MF1567-3CA00-1AA1 № LKK-F112-545-04-0003	51587-12	γ=±0,25 %		γ=±0,6 %
	ТЩ4, т. 1		Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1139	15772-11	γ=±0,5 %		
16	Давление азота ТЩ4,	от 0 до 10 кгс/см ²	Преобразователь давления измерительный SITRANS P220 мод. 7MF1567-3CA00-1AA1 № LKK-F112-545-04-0005	51587-12	γ=±0,25 %		γ=±0,6 %
	r. 1	33.7(3.9)	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1139	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
17	Температура дымовых газов 10/1	от 0 до +1100 °C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610159	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70783	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
18	Температура подогрева воздуха в керамичес-ком рекупе-	от 0 до +1100 °C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610166	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375
	раторе 10/1		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70783	15772-11	Δ=±0,2 °C		до +1100 °C
19	Температура в колодце	от +900 до +1400 °C	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 779	1352-61	Δ=±15 °C		Δ=±15 °C
	10/1	до +1400 °С	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70783	15772-11	γ=±0,014 %		
20	Температура в колодце 10/2	от +900 до +1400 °C	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 299	1352-61	Δ=±15 °C		Δ=±15 °C
		до +1400 С	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70783	15772-11	γ=±0,014 %		

1	2	3	4	5	6	7	8
21	Температура дымовых газов 10/2	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610249	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70783	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
22	Температура подогрева воздуха в керамичес-	от 0 до +1100 °C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610197	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	ком рекуператоре 10/2		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70783	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
23	Температура разогрева в колодце 10/1	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610223	рмоэлектрический кабельный включ. д. КТХА 01.06-020-К1-И-Т310- 36765 -09 $\Delta=\pm(0,004\cdot t)$ °C св. 375		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375	
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70783	15772-11	Δ=±0,2 °C		до +1100 °C

1	2	3	4	5	6	7	8
24	Температура разогрева в колодце 10/2	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610239	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70783	15772-11	Δ=±0,2 °C		до +1100°C
25	Температура дымовых газов 10/3	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610187	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV73225	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
26	керамичес-	подогрева воздуха в керамичесь ком рекупе- от 0 до +1100 °C ком рекупе-	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004-t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375
	раторе 10/3	M	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV73225	15772-11	Δ=±0,2 °C		до +1100 °C
27	Температура в колодце	от +900 го +1400 °С	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 728	1352-61	Δ=±15 °C		Δ=±15 °C
	10/3	до +1400 °C	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV73225	15772-11	γ=±0,014 %		

1	2	3	4	5	6	7	8
28	Температура в колодце	от +900 до +1400 °C	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 242	1352-61	Δ=±15 °C		Δ=±15 °C
	10/4	до +1400 °С	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV73225	15772-11	γ=±0,014 %		
29	Температура дымовых газов 10/4	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610218	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV73225	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
30	Температура подогрева воздуха в керамичес-ком рекупе-	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610206	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	раторе 10/4		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV73225	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
31	Температура дымовых газов 11/1	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610213	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70811	15772-11	Δ=±0,2 °C		св. 375 до +1100°C

1	2	3	4	5	6	7	8
32	Температура подогрева воздуха в керамичес- ком рекупе-	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610193	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	раторе 11/1		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70811	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
33	Температура в колодце	от +900	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 785	1352-61	Δ=±15 °C		Δ=±15 °C
	11/1	до +1400 °C	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70811	15772-11	γ=±0,014 %		
34	Температура в колодце	от +900 до +1400 °C	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 333	1352-61	Δ=±15 °C		Δ=±15 °C
	11/2	135 05 (610)	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70811	15772-11	γ=±0,014 %		
35	Температура дымовых газов 11/2	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610182	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70811	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C

1	2	3	4	5	6	7	8
36	Температура подогрева воздуха в керамичес-	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610184	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	ком рекуператоре 11/2		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70811	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
37	Температура разогрева в колодце 10/3	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610186	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70811	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
38	Температура разогрева в колодце 10/4	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610194	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70811	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C

1	2	3	4	5	6	7	8
39	Температура разогрева в колодце 11/1	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610205	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV73325	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
40	Температура разогрева в колодце 11/2	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610201	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV73325	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
41	Давление в	от -5 до +5	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 1119510	32854-09	γ=±0,3 %		γ=±0,6 %
	колодце 10/1	мм вод. ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1307	15772-11	γ=±0,5 %		
42	Давление в колодце 10/2	от -5 до +5	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 1119399	32854-09	γ=±0,3 %		γ=±0,6 %
	колодце 10/2	мм вод. ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1307	15772-11	γ=±0,5 %		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
43	Давление в колодце 10/3	от -5 до +5	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 338426	32854-09	γ=±0,3 %		γ=±0,6 %
	колодце 10/3	мм вод. ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1307	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
44	Давление в	от -5 до +5	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 338427	32854-09	γ=±0,3 %		γ=±0,6 %
	колодце 10/4	мм вод. ст. Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1307	15772-11	γ=±0,5 %			
45	Давление в	от -5 до +5 мм вод. ст. мод. Метран-150СG0 2 А № 338428 мм вод. ст. модуль 6ES7 331-7KF02-0A		32854-09	γ=±0,3 %		γ=±0,6 %
	колодце 11/1		Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1307	15772-11	γ=±0,5 %		
46	Давление в	от -5 до +5	Датчик давления «Метран-150» мод. Метран-150СG0 2 А № 338429	32854-09	γ=±0,3 %		γ=±0,6 %
	колодце 11/2	мм вод. ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1307	15772-11	γ=±0,5 %		113-3
47	Расход смешанного газа 11/3	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-S923-9477739	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
			Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1355	15772-11	γ=±0,5 %		
48	Расход инжекти- рующего	от 700 до 2000	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120158	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	рующего воздуха 11/3		Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1355	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
49	Расход смешанного	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-S923-9477740	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
	газа 11/4	м /ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1355	15772-11	γ=±0,5 %		
50	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120157	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 11/4	м /ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1355	15772-11	γ=±0,5 %		
51	Расход смешанного	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-S907-9475315	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
	газа 12/1	71 M74	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1355	15772-11	γ=±0,5 %		
52	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120156	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 12/1	м /ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1355	15772-11	γ=±0,5 %		
53	Давление смешанного газа ТЩ4,	от 0 до 800	Преобразователь давления измерительный SITRANS P210 мод. 7MF1566-3AA00-1AA1 № LKK-F202-510-01-0003	51587-12	γ=±0,25 %		γ=±0,6 %
Ц	газа ТЩ4, т. 2 мм вод. ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1355	15772-11	γ=±0,5 %			

1	2	3	4	5	6	7	8
54	Давление инжекти- рующего	от 0 до 10 кгс/см ²	Преобразователь давления измерительный SITRANS P220 мод. 7MF1567-3CA00-1AA1 № LKK-F112-545-04-0008	51587-12	γ=±0,25 %		γ=±0,6 %
	воздуха ТЩ4, т. 2		Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1355	15772-11	γ=±0,5 %		
55	Расход смешанного	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-R825-9426876	30883-05	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
	газа 12/2	М /Ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1151	15772-11	γ=±0,5 %		
56	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120155	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 12/2	М /Ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1151	15772-11	γ=±0,5 %		
57	Расход смешанного газа 12/3	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-V510-9640008	30883-05	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %
	ra3a 12/3	м /ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1151	15772-11	γ=±0,5 %		
58	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120154	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %
	воздуха 12/3	м./ч	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1151	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8	
59	Расход смешанного газа 12/4	от 1500 до 5000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-1BA02-1AA1-Z № N1-E117-9167414	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±0,8 %	
			Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1151	15772-11	γ=±0,5 %			
60	Расход инжекти- рующего	от 700 до 2000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII мод. 7MF4433-DA02-1AA1-A40 № 9120153	45743-10	γ=±(0,0029·r+ +0,071) %		γ=±6 %	
	воздуха 12/4		Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1151	15772-11	γ=±0,5 %			
61	Давление сжатого воздуха	от 0 до 10 кгс/см ²	Преобразователь давления измерительный SITRANS P220 мод. 7MF1567-3CA00-1AA1 № LKK-F112-545-06-0002	51587-12	γ=±0,25 %		γ=±0,6 %	
	ТЩ4, т. 2		Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1151	15772-11	γ=±0,5 %			
62	Давление азота ТЩ4,	от 0 до 10 кгс/см ²	Преобразователь давления измерительный SITRANS P220 мод. 7MF1567-3CA00-1AA1 № LKK-F112-545-06-0003	51587-12	γ=±0,25 %		γ=±0,6 %	
	т. 2			Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1151	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
63	Температура дымовых газов 11/3	от 0 до +1100 °C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610198	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV71627	15772-11	Δ=±0,2 °C		до +1100 °C
64	Температура подогрева воздуха в керамичес-ком рекупе-	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610153	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	раторе 11/3		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV71627	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
65	Температура в колодце	от +900 до +1400 °C	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 3578	1352-61	Δ=±15 °C		Δ=±15 °C
	11/3	до 11400 С	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV71627	15772-11	γ=±0,014 %		
66	Температура в колодце	от +900 до +1400 °C	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 713	1352-61	Δ=±15 °C		Δ=±15 °C
	11/4	до 11400 С	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV71627	15772-11	γ=±0,014 %		

1	2	3	4	5	6	7	8
67	Температура дымовых газов 11/4	от 0 до +1100 °C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610155	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV71627	15772-11	Δ=±0,2 °C		до +1100 °C
68	Температура подогрева воздуха в керамичес-ком рекупе-	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610174	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	раторе 11/4		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV71627	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
69	Температура разогрева в колодце 11/3	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610196	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004-t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV71627	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
70	Температура разогрева в колодце 11/4	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610168	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV71627	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C

1	2	3	4	5	6	7	8
71	Температура дымовых газов 12/1	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610165	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV69361	15772-11	Δ=±0,2 °C		до +1100 °C
72	Температура подогрева воздуха в керамичес-ком рекупе-	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610228	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	раторе 12/1		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV69361	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
73	Температура в колодце	от +900 до +1400°C	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 2753	1352-61	Δ=±15 °C		Δ=±15 °C
	12/1	до 11400 С	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV69361	15772-11	γ=±0,014 %		
74	Температура в колодце	ot +900	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 1982	1352-61	Δ=±15 °C		Δ=±15 °C
	12/2	до +1400 °C	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV69361	15772-11	γ=±0,014 %		

1_	2	3	4	5	6	7	8
75	Температура дымовых газов 12/2	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610191	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV69361	15772-11	Δ=±0,2 °C		до +1100 °C
76	Температура подогрева воздуха в керамичес-ком рекупе-	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610167	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	раторе 12/2		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV69361	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
77	Температура дымовых газов 12/3	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610247	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV68931	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
78	Температура подогрева воздуха в керамичес-ком рекупе-	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610245	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
	раторе 12/3		Модуль 6ES7 331-7SF00-0AB0 № S C-EOV68931	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C

1	2	3	4	5	6	7	8
79	Температура в колодце 12/3	от +900 до +1400°C	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 088	1352-61	Δ=±15 °C		Δ=±15 °C
		, and the second	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV68931	15772-11	γ=±0,014 %		
80	Температура в колодце 12/4	01 +900	Телескоп радиационный для пирометров РАПИР ТЕРА-50 № 635	1352-61	Δ=±15 °C		Δ=±15 °C
		до +1400 °C	Модуль 6ES7 331-7SF00-0AB0 № S C-EOV68931	15772-11	γ=±0,014 %		84461
81	Температура дымовых газов 12/4	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-2000 № 1610195	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV68931	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
82	Температура подогрева воздуха в керамичес-ком рекуператоре 12/4	от 0 до +1100 °C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610250	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV68931	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C

1	2	3	4	5	6	7	8	
83	Температура разогрева в колодце 12/1	Ba B 70 +1100 °C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610255	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C	
				Модуль 6ES7 331-7SF00-0AB0 № S C-EOV68931	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C
84	Температура разогрева в колодце 12/2	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610183	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C св. 375	
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV68931	15772-11	Δ=±0,2 °C		до +1100 °C	
85	Температура разогрева в колодце 12/3	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610204	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C	
				Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70050	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C

1	2	3	4	5	6	7	8	
86	Температура разогрева в колодце 12/4	от 0 до +1100°C	Преобразователь термоэлектрический кабельный мод. КТХА 01.06-020-К1-И-Т310-20-1000 № 1610203	36765-09	Δ=±1,5 °C от 0 до +375 °C включ. Δ=±(0,004·t) °C св. 375 до +1100 °C		Δ=±1,7 °C от 0 до +375 °C включ. Δ=±(0,2+ +0,004·t) °C	
			Модуль 6ES7 331-7SF00-0AB0 № S C-EOV70050	15772-11	Δ=±0,2 °C		св. 375 до +1100 °C	
87	Давление в колодце 11/3	TO +3	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 338430	32854-09	γ=±0,3 %		γ=±0,6 %	
			Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1400	15772-11	γ=±0,5 %			
88	Давление в колодце 11/4	The state of the second control of	110 +2	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 338986	32854-09	γ=±0,3 %		γ=±0,6 %
		мм вод. ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1400	15772-11	γ=±0,5 %			
89	Давление в	TO +3	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 860321	32854-09	γ=±0,3 %		γ=±0,6 %	
	колодце 12/1	мм вод. ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1400	15772-11	γ=±0,5 %			
90	Давление в колодце 12/2	авление в от -5	Датчик давления «Метран-150» мод. Метран-150СG0 2 А № 860322	32854-09	γ=±0,3 %		γ=±0,6 %	
		мм вод, ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1400	15772-11	γ=±0,5 %			

1	2	3	4	5	6	7	8
91	Давление в колодце 12/3	от -5 до +5 мм вод. ст.	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 860323	32854-13	γ=±0,3 %		γ=±0,6 %
			Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1400	15772-11	γ=±0,5 %		3 - 3 - 3
92	Давление в колодце 12/4	от -5 до +5	Датчик давления «Метран-150» мод. Метран-150СG0 2 A № 860324	32854-09	γ=±0,3 %		γ=±0,6 %
		мм вод. ст.	Модуль 6ES7 331-7KF02-0AB0 № S C-EOUK1400	15772-11	γ=±0,5 %		

Примечание – В таблице приняты следующие обозначения: * – регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений; Δ – абсолютная погрешность, единица измерений; γ – приведенная погрешность, γ ; γ – отношение максимального (для выбранной модели преобразователя) значения верхнего предела диапазона измерений к установленному верхнему пределу; γ – измеренная температура, γ С

Приложение Б Образец оформления протокола поверки

(рекомендуемое)

протокол поверки

При следующих значениях влияющих факторов: - температура окружающего воздуха °С; - атмосферное давление Па; - относительная влажность В; - напряжение питания В; - частота Гц, Результаты операций поверки: 1 Рассмотрение документации 2 Внешний осмотр 3 Проверка сопротивления защитного заземления 4 Проверка условий эксплуатации компонентов ИУС 5 Опробование 6 Подтверждение соответствия программного обеспечения ИК 7 Определение погрешности измерений и синхронизации време 9 Проверка метрологических характеристик измеривленыя как Результаты проверки метрологических характеристик измеривленыя в таблице по форме таблицы А.1 приложения А настояще Заключение СИ (не) соответствует метрологическим требование Руководитель отдела (группы)	r « »20
заводской номер (номера)	
поверено в соответствии с ——————————————————————————————————	
при следующих значениях влияющих факторов: - температура окружающего воздуха°C; - атмосферное давление Па; - относительная влажность %; - напряжение питания В; - частота Гц. Результаты операций поверки: 1 Рассмотрение документации 3 Проверка сопротивления защитного заземления 4 Проверка условий эксплуатации компонентов ИУС 5 Опробование 6 Подтверждение соответствия программного обеспечения ИК 7 Определение погрешности измерений и синхронизации време 9 Проверка метрологических характеристик измерительных каг Результаты проверки метрологических характеристик измеравлены в таблице по форме таблицы А.1 приложения А настоящи Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	
при следующих значениях влияющих факторов: - температура окружающего воздуха°C; - атмосферное давлениеПа; - относительная влажность%; - напряжение питанияВ; - частотаГц, Результаты операций поверки: 1 Рассмотрение документации 2 Внешний осмотр 3 Проверка сопротивления защитного заземления 4 Проверка условий эксплуатации компонентов ИУС 5 Опробование 6 Подтверждение соответствия программного обеспечения ИК 7 Определение погрешности измерений и синхронизации време 9 Проверка метрологических характеристик измерительных карезультаты проверки метрологических характеристик измеравлены в таблице по форме таблицы А.1 приложения А настоящи Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	
при следующих значениях влияющих факторов: - температура окружающего воздуха°C; - атмосферное давление Па; - относительная влажность %; - напряжение питания В; - частота Гц, Результаты операций поверки: 1 Рассмотрение документации 2 Внешний осмотр 3 Проверка сопротивления защитного заземления 4 Проверка условий эксплуатации компонентов ИУС 5 Опробование 6 Подтверждение соответствия программного обеспечения ИК 7 Определение погрешности измерений и синхронизации време 9 Проверка метрологических характеристик измерительных карезультаты проверки метрологических характеристик измеравлены в таблице по форме таблицы А.1 приложения А настоящи Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	эверки
при следующих значениях влияющих факторов: - температура окружающего воздуха°C; - атмосферное давление Па; - относительная влажность %; - напряжение питания В; - частота Гц. Результаты операций поверки: 1 Рассмотрение документации 2 Внешний осмотр 3 Проверка сопротивления защитного заземления 4 Проверка условий эксплуатации компонентов ИУС 5 Опробование 6 Подтверждение соответствия программного обеспечения ИК 7 Определение погрешности измерений и синхронизации време 9 Проверка метрологических характеристик измерительных как Результаты проверки метрологических характеристик измер завлены в таблице по форме таблицы А.1 приложения А настоящи Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	асс или погрешность
- температура окружающего воздуха°C; - атмосферное давление Па; - относительная влажность %; - напряжение питания В; - частота Гц, Результаты операций поверки: 1 Рассмотрение документации 2 Внешний осмотр 3 Проверка сопротивления защитного заземления 4 Проверка условий эксплуатации компонентов ИУС 5 Опробование 6 Подтверждение соответствия программного обеспечения ИК 7 Определение погрешности измерений и синхронизации време 9 Проверка метрологических характеристик измерительных как Результаты проверки метрологических характеристик измер авлены в таблице по форме таблицы А.1 приложения А настояще Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	
2 Внешний осмотр	
3 Проверка сопротивления защитного заземления	
4 Проверка условий эксплуатации компонентов ИУС	
5 Опробование	
6 Подтверждение соответствия программного обеспечения ИК 7 Определение погрешности измерений и синхронизации време 9 Проверка метрологических характеристик измерительных как Результаты проверки метрологических характеристик измеравлены в таблице по форме таблицы А.1 приложения А настояще Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	
7 Определение погрешности измерений и синхронизации време 9 Проверка метрологических характеристик измерительных каз Результаты проверки метрологических характеристик измеравлены в таблице по форме таблицы А.1 приложения А настояще Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	INC
9 Проверка метрологических характеристик измерительных как Результаты проверки метрологических характеристик измер авлены в таблице по форме таблицы А.1 приложения А настоящо Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	
Результаты проверки метрологических характеристик измер авлены в таблице по форме таблицы А.1 приложения А настоящо Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	
авлены в таблице по форме таблицы А.1 приложения А настоящо Заключение СИ (не) соответствует метрологическим требовани Руководитель отдела (группы)	
Руководитель отдела (группы)	ей МП.
1.000	MR
подпись	
N. A. C.	инициалы, фамилия
Поверитель	ннициалы, фамилия

Приложение В Образец приложения к свидетельству о поверке

(рекомендуемое)

Но- мер ИК	Наимено- вание ИК ИУС	Диапазон измерений ИК ИС, единица измерений	Средства измерений, входящие в состав ИК ИУС			Основная погрешность ИК ИУС	
			наименование, тип СИ, заводской номер	номер в ФИФ ОЕИ	пределы допускаемой основной погрешнос- ти	Факти- ческая	границы допускае- мой погреш- ности

Приложение Г (справочное)

Перечень ссылочных нормативных документов

ГОСТ 8.508-84 ГСИ. Метрологические характеристики средств измерений и точностные характеристики средств автоматизации ГСП. Общие методы оценки и контроля

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования

ГОСТ 18404.0-78 Кабели управления. Общие технические условия

ГОСТ 26411-85 Кабели контрольные. Общие технические условия

ГОСТ Р МЭК 870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров

РМГ 62-2003 ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации

МИ 2439-97 ГСИ. Метрологические характеристики измерительных систем. Номенклатура. Принципы регламентации, определения и контроля

МИ 2539-99 ГСИ. Измерительные каналы контроллеров, измерительно-вычислительных, управляющих, программно-технических комплексов. Методика поверки