

ООО Центр Метрологии «СТП»

Регистрационный номер записи в реестре аккредитованных лиц RA.RU.311229

«УТВЕРЖДАЮ»

Технический директор

№ 000 Пентр Метрологии «СТП»

04

И.А. Яценко

2017 г.

Государственная система обеспечения единства измерений

Система измерений количества и параметров нефти сырой № 2018 АО «Татойлгаз» при ДНС-203с Кузайкинского нефтяного месторождения

МЕТОДИКА ПОВЕРКИ

МП 2804/1-311229-2017

СОДЕРЖАНИЕ

1 Введение	3
2 Операции поверки	3
3 Средства поверки	3
4 Требования техники безопасности и требования к квалификации поверителей	4
5 Условия поверки	4
6 Подготовка к поверке	4
7 Проведение поверки	4
8 Оформление результатов поверки	7

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на систему измерений количества и параметров нефти сырой № 2018 АО «Татойлгаз» при ДНС-203с Кузайкинского нефтяного месторождения (далее СИКНС), заводской № 01, изготовленную ООО «Корвол», г. Альметьевск, и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
 - 1.2 Интервал между поверками СИКНС 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, приведенные в таблице 2.1.

Таблица 2.1 – Операции поверки

No	Поличенно операции	Номер пункта	
п/п	Наименование операции	методики поверки	
1	Проверка технической документации	7.1	
2	Внешний осмотр	7.2	
3	Опробование	7.3	
4	Определение метрологических характеристик СИКНС	7.4	
5	Оформление результатов поверки	8	

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки СИКНС применяют эталоны и средства измерений (далее – СИ), приведенные в таблице 3.1.

Таблица 3.1 – Основные эталоны и СИ

Номер пункта методики	Наименование и тип основного и вспомогательного средства поверки и метрологические и основные технические характеристики средства поверки		
5.1	Барометр-анероид M-67 с пределами измерений от 610 до 790 мм рт.ст., погрешность измерений ± 0.8 мм рт.ст., по ТУ 2504—1797—75		
5.1	Психрометр аспирационный М34, пределы измерений влажности от 10 до 100 %, погрешность измерений ±5 %		
5.1	Термометр ртутный стеклянный ТЛ-4 (№ 2) с пределами измерений от 0 до плюс 55 °C по ГОСТ 28498–90. Цена деления шкалы 0,1 °C		
7.4	Калибратор многофункциональный МС5-R (далее — калибратор): диапазон воспроизведения силы постоянного тока от 0 до 25 мА, пределы допускаемой основной погрешности воспроизведения ±(0,02 % показания + 1 мкА); диапазон воспроизведения частотных сигналов прямоугольной формы от 0,0028 Гц до 50 кГц, пределы допускаемой основной относительной погрешности воспроизведения ±0,01 %		

- 3.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик СИКНС с требуемой точностью.
- 3.3 Все применяемые эталоны должны быть аттестованы, СИ должны иметь действующий знак поверки и (или) свидетельство о поверке, и (или) запись в паспорте (формуляре) СИ, заверенной подписью поверителя и знаком поверки.

4 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться следующие требования:
- корпуса применяемых СИ должны быть заземлены в соответствии с их эксплуатационной документацией;
- ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений;
- работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания;
- обеспечивающие безопасность труда, производственную санитарию и охрану окружающей среды;
- предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и эксплуатационной документацией оборудования, его компонентов и применяемых средств поверки.
 - 4.2 К работе по поверке должны допускаться лица:
 - достигшие 18-летнего возраста;
 - прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию на СИКНС, СИ, входящие в состав СИКНС, и средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

- 5.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха, °C

от плюс 15 до плюс 25

- относительная влажность, %

от 30 до 80

– атмосферное давление, кПа

от 84,0 до 106,7

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные операции:

- проверяют заземление СИ, работающих под напряжением;
- эталонные СИ и вторичную часть ИК СИКНС устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;
- эталонные СИ и вторичную часть ИК СИКНС выдерживают при температуре, указанной в разделе 5, не менее трех часов, если время их выдержки не указано в инструкции по эксплуатации;
- осуществляют соединение и подготовку к проведению измерений эталонных СИ и вторичную часть ИК СИКНС в соответствии с требованиями эксплуатационной документации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка технической документации

- 7.1.1 При проведении проверки технической документации проверяют:
- наличие руководства по эксплуатации СИКНС;
- наличие паспорта СИКНС;
- наличие свидетельства о предыдущей поверке СИКНС (при периодической поверке);
- наличие паспортов (формуляров) СИ, входящих в состав СИКНС;
- наличие действующего знака поверки и (или) свидетельства о поверке, и (или) заверенной подписью поверителя и знаком поверки записи в паспорте (формуляре) СИ, входящих в состав СИКН.

Примечания

- 1 Документы на поверку СИ, входящих в состав СИКНС, представлены в приложении А настоящей методики поверки.
- 2 При наличии действующего свидетельства о поверке на комплекс измерительно-вычислительный ИМЦ-03, входящий в состав СИКНС, процедуры по 7.4.1, 7.4.2 допускается не проводить.
- 7.1.2 Результаты проверки считают положительными при наличии всей технической документации по пункту 7.1.1.

7.2 Внешний осмотр

- 7.2.1 При проведении внешнего осмотра СИКНС контролируют выполнение требований технической документации к монтажу СИ, измерительно-вычислительных и связующих компонентов СИКНС.
- 7.2.2 При проведении внешнего осмотра СИКНС устанавливают состав и комплектность СИКНС.
- 7.2.3 Проверку выполняют на основании сведений, содержащихся в паспорте на СИКНС. При этом контролируют соответствие типа СИ, указанного в паспортах СИ, записям в паспорте СИКНС.
- 7.2.4 Результаты проверки считают положительными, если внешний вид, маркировка и комплектность СИКНС соответствуют требованиям технической документации.

7.3 Опробование

7.3.1 Подтверждение соответствия программного обеспечения

- 7.3.1.1 Подлинность программного обеспечения (далее ПО) СИКНС проверяют сравнением идентификационных данных ПО с соответствующими идентификационными данными, зафиксированными при испытаниях в целях утверждения типа и отраженными в описании типа СИКНС.
- 7.3.1.2 Идентификационные данные ПО ИМЦ-03 отражаются на дисплее комплекса измерительно-вычислительного ИМЦ-03 во вкладке «Меню Просмотр 2 Версия программы».
- 7.3.1.3 Идентификационные данные ПО Импульс-2 отражаются на вкладке «Технологическая схема» автоматизированного рабочего места оператора.
- 7.3.1.4 Полученные идентификационные данные сравнить с исходными, представленными в таблице 7.1.

Таблица 7.1 – Идентификационные данные ПО СИКНС

Идентификационные данные (признаки)	Знач	Значение	
Идентификационное наименование ПО	oil_mm.exe	Импульс-2	
Номер версии (идентификационный номер) ПО	352.02.01	3.00	
Цифровой идентификатор ПО (CRC32)	14C5D41A	07E8BEE3	
Наименование ПО	ПО ИВК	ПО АРМ	

- 7.3.1.5 Проверяют возможность несанкционированного доступа к ПО СИКНС и наличие авторизации (введение логина и пароля), возможность обхода авторизации, проверка реакции ПО СИКНС на неоднократный ввод неправильного логина и (или) пароля (аутентификация).
- 7.3.1.6 Результаты опробования считают положительными, если идентификационные данные ПО СИКНС совпадают с идентификационными данными, которые приведены в таблице 7.1, а также исключается возможность несанкционированного доступа к ПО СИКНС и обеспечивается аутентификация.

7.3.2 Проверка работоспособности

- 7.3.2.1 Приводят СИКНС в рабочее состояние в соответствие с технической документацией фирмы-изготовителя на нее. Проверяют прохождение сигналов калибратора, имитирующих измерительные сигналы. Проверяют на мониторе автоматизированного рабочего места оператора СИКНС показания по регистрируемым в соответствии с конфигурацией СИКНС параметрам технологического процесса.
- 7.3.2.2 Результаты опробования считают положительными, если при увеличении/уменьшении значения входного сигнала соответствующим образом изменяются

значения измеряемой величины на мониторе автоматизированного рабочего места оператора СИКНС.

Примечание — Допускается проводить проверку работоспособности СИКНС одновременно с определением метрологических характеристик по пункту 7.4 настоящей методики поверки.

7.4 Определение метрологических характеристик

7.4.1 Определение абсолютной погрешности измерений сигнала силы постоянного тока от 4 до 20 мА

- 7.4.1.1 Отключают первичный измерительный преобразователь (далее ИП) измерительного канала (далее ИК), подключают калибратор, установленный в режим имитации сигналов силы постоянного тока и задают электрический сигнал силы постоянного тока. В качестве реперных точек принимают точки 4; 8; 12; 16; 20 мА.
- 7.4.1.2 В каждой реперной точке вычисляют абсолютную погрешность Δ_I , %, по формуле

$$\Delta_{I} = I_{\text{new}} - I_{\text{new}},\tag{1}$$

где

 I_{mu} – значение силы постоянного тока, измеренное СИКНС, мА;

 I_{2m} – значение силы постоянного тока, заданное калибратором, мА.

- 7.4.1.3 Результаты поверки считают положительными, если рассчитанная абсолютная погрешность измерений сигнала силы постоянного тока от 4 до 20 мА в каждой реперной точке не выходит за пределы ± 0.015 мА.
 - 7.4.2 Определение относительной погрешности измерений импульсного сигнала
- 7.4.2.1 Отключают первичный ИП ИК, подключают калибратор, установленный в режим генерации импульсов, и подают 10000 импульсов.
 - 7.4.2.2 Вычисляют относительную погрешность δ_n , %, по формуле

$$\delta_n = \frac{n_{u_{3M}} - n_{_{3M}}}{n_{_{2M}}} \cdot 100,\tag{2}$$

где

количество импульсов, подсчитанное СИКНС, импульсы;

п.... – количество импульсов, заданное калибратором, импульсы.

- 7.4.2.3 Результаты поверки считаются положительными, если рассчитанная относительная погрешность при измерении импульсного сигнала не выходит за пределы ± 0.01 %.
 - 7.4.2.4 Процедуры по пунктам 7.4.2.1-7.4.2.3 выполняют не менее трех раз.
 - 7.4.3 Определение относительной погрешности измерений массы сырой нефти
- 7.4.3.1 Относительная погрешность измерений массы сырой нефти при прямом методе динамических измерений принимается равной относительной погрешности счетчиков-расходомеров массовых.
- 7.4.3.2 Результаты поверки считают положительными, если относительная погрешность измерений массы сырой нефти не выходит за пределы $\pm 0,25$ % для рабочей измерительной линии и $\pm 0,2$ % для контрольной измерительной линии.
- 7.4.4 Определение относительной погрешности измерений массы нетто сырой нефти
- 7.4.4.1 Относительная погрешность измерений массы нетто сырой нефти $\delta M_{_{\rm H}}$, %, определяется по формуле

$$\delta M_{H} = \pm 1.1 \sqrt{\left(\delta M\right)^{2} + \frac{\left(\Delta W_{e}\right)^{2} + \left(\Delta W_{Mn}\right)^{2} + \left(\Delta W_{xc}\right)^{2}}{\left(1 - \frac{W_{e} + W_{Mn} + W_{xc}}{100}\right)^{2}}},$$
(3)

где δM — относительная погрешность измерений массы сырой нефти, %;

 ΔW_{c} – абсолютная погрешность определения массовой доли воды, %;

 $\Delta W_{_{MR}}$ — абсолютная погрешность определения массовой доли механических примесей, %;

 $\Delta W_{...}$ — абсолютная погрешность определения массовой доли хлористых солей, %;

 W_{a} — массовая доля воды в сырой нефти, %;

 $W_{_{_{MR}}}$ — массовая доля механических примесей в сырой нефти, %;

 W_{x} — массовая доля хлористых солей в сырой нефти, %.

- 7.4.4.2 Результаты поверки считают положительными, если рассчитанная относительная погрешность измерений массы нетто сырой нефти не выходит за пределы:
- $-\pm0,35~\%$ при измерении объемной доли воды с помощью влагомера нефти поточного УДВН-1 π м;
- $-\pm1,0$ % при измерении массовой доли воды в испытательной лаборатории по ГОСТ 2477–65.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке СИКНС в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 8.2 Отрицательные результаты поверки СИКНС оформляют в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». При этом выписывается извещение о непригодности к применению СИКНС с указанием причин непригодности.

приложение а

(Рекомендуемое)

Документы на поверку СИ, входящих в состав СИКНС

Наименование СИ	Документ	
Счетчики-расходомеры массовые Micro Motion	«Рекомендация. ГСИ. Счетчики-	
модели CMF300 (регистрационный номер в	расходомеры массовые Micro Motion фирмы	
Федеральном информационном фонде по	«Fisher-Rosemount». Методика поверки	
обеспечению единства измерений (далее –	поверочной установкой «ВСР-М»	
регистрационный номер) 13425-01)	«Рекомендация. ГСИ. Счетчики-	
	расходомеры массовые Micro Motion фирмы	
	«Fisher-Rosemount». Методика поверки»	
	МИ 2841–2003 «Рекомендация. ГСИ.	
	Счетчики-расходомеры массовые «Micro	
	Motion» фирмы «Fisher Rosemount».	
	Методика поверки передвижной поверочной	
	установкой УППМ»	
Преобразователь давления измерительный	МИ 1997-89 «Рекомендация.	
3051СD (регистрационный номер 14061-04)	Преобразователи давления измерительные.	
Преобразователи давления измерительные	Методика поверки»	
3051TG (регистрационный номер 14061-04)	P. POYL II .	
Преобразователь давления измерительный 3051	«Рекомендация. ГСИ. Преобразователи	
модификации 3051СD (регистрационный номер	давления измерительные 3051. Методика	
14061-10)	поверки»	
Термопреобразователи сопротивления	ГОСТ 8.461–2009 ГСИ.	
платиновые серии 65 (регистрационный номер	Термопреобразователи сопротивления из	
22257-05) Преобразователи измерительные 644	платины, меди и никеля. Методика поверки	
Преобразователи измерительные 644 (регистрационный номер 14683-04)	«Преобразователи измерительные 248, 644, 3144P, 3244MV. Методика поверки»,	
(регистрационный номер 14083-04)	3144Р, 3244МV. Методика поверки», утвержденная ФГУП ВНИИМС в октябре	
	2014 г.	
Влагомер поточный ВСН-АТ (регистрационный	МП 0310-6-2015 «Инструкция. ГСИ.	
номер 62863-15)	Влагомеры поточные ВСН-АТ. Методика	
nemep edees (s)	поверки», утвержденная ФГУП ВНИИМС	
	08.09.2015 г.	
Счетчик нефти турбинный МИГ исполнения 40	Раздел «Методика поверки» руководства по	
(регистрационный номер 26776-04)	эксплуатации БН.10-02РЭ, утвержденный	
	ГЦИ СИ ВНИИР в декабре 2003 г.	
Влагомер нефти поточный УДВН-1пм	МИ 2366-2005 «Рекомендация. ГСИ.	
(регистрационный номер 14557-10)	Влагомеры нефти типа УДВН. Методика	
	поверки», утвержденная ГЦИ СИ ВНИИР в	
	29.12.2005 г.	
Комплекс измерительно-вычислительный	МИ 3311—2011 «Рекомендация.	
ИМЦ-03 (регистрационный номер 19240-11)	Государственная система обеспечения	
	единства измерений. Комплексы	
	измерительно-вычислительные ИМЦ-03.	
	Методика поверки», утвержденная ФГУП	
	ВНИИМС в 25.01.2011 г.	