УТВЕРЖДАЮ

Временно и.о. директора

ФБУ «Томский ЦСМ»

Л.А. Хустенко

20 » моги 2016 г.

Государственная система обеспечения единства измерений Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 450 среднесортного цеха АО «ЕВРАЗ ЗСМК»

МЕТОДИКА ПОВЕРКИ

МП 255-16

Содержание

1 Общие положения 3 2 Операции поверки 4 3 Средства поверки 5 4 Требования к квалификации поверителей 5
4 Требования к квалификации поверителей
5 Требования безопасности 5
6 Условия поверки
7 Подготовка к поверке
8 Проведение поверки
9 Оформление результатов поверки
Приложение А (обязательное) Метрологические характеристики измерительных каналов ИУС 14
Приложение Б (рекомендуемое) Образец оформления протокола поверки23
Приложение В (рекомендуемое) Образец приложения к свидетельству о поверке
Приложение Г (справочное) Перечень ссылочных нормативных документов25

1 ОБШИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на систему измерительно-управляющую технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 450 среднесортного цеха АО «ЕВРАЗ 3СМК» (далее ИУС) и устанавливает методы и средства ее первичной и периодической поверок.
- 1.2 Поверке подлежит ИУС в соответствии с перечнем измерительных каналов (ИК), приведенным в приложении А настоящей методики поверки. На основании письменного заявления собственника ИУС допускается проведение поверки отдельных измерительных каналов из перечня, приведённого в описании типа ИУС, с обязательным указанием в приложении к свидетельству о поверке информации о количестве и составе поверенных ИК.
 - 1.3 Первичную поверку ИУС выполняют перед вводом в эксплуатацию и после ремонта.
- 1.4 Периодическую поверку ИУС выполняют в процессе эксплуатации через установленный интервал между поверками. Периодичность поверки (интервал между поверками) ИУС 1 год.
- 1.5 Измерительные компоненты ИУС поверяют с интервалом между поверками, установленным при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки ИУС, поверяется только этот компонент и поверка ИУС не проводится.
- 1.6 При замене измерительных компонентов на однотипные, прошедшие испытания в целях утверждения типа, с аналогичными техническими и метрологическими характеристиками поверке подвергают только те ИК, в которых проведена замена измерительных компонентов. В этом случае собственником ИУС должен быть оформлен акт об изменениях, внесенных в ИУС, являющийся неотъемлемой частью паспорта, в которых указаны компоненты ИК.
- 1.7 При модернизации ИУС путем введения новых измерительных каналов должны быть проведены их испытания в целях утверждения типа.
- 1.8 В случае замены отдельных компонентов автоматизированных рабочих мест (APM) оператора, за исключением замены жёсткого диска компьютера, проводят проверку функционирования ИУС в объёме 8.5 настоящей методики поверки.
- 1.9 В случае обновления программного обеспечения (ПО) ИУС, модификации его функций проводится анализ изменений, внесённых в программное обеспечение. Если внесённые изменения могут повлиять на метрологически значимую часть программного обеспечения, то проводят испытания ИУС в целях утверждения типа.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1

		Проведение операции при поверке первичной						
	Номер							
Наименование операции	пункта методики поверки	при вводе в эксплуатацию	после ремонта ИК или замены компонента	после переустановки ПО или замены APM оператора	периоди ческой			
1 Рассмотрение документации	8.1	да	да*	да*	да*			
2 Внешний осмотр	8.2	да	нет	да	да			
3 Проверка электрического сопротивления цепи защитного заземления	8.3	да	да*	нет	да			
4 Проверка условий эксплуатации компонентов ИС	8.4	да	да*	нет	да			
5 Опробование	8.5	да	да*	да	да			
6 Подтверждение соответствия программного обеспечения ИУС	8.6	да	нет	да	да			
7 Определение погрешности измерений и синхронизации времени	8.7	да	нет	да*	да			
8 Проверка метрологических характеристик измерительных каналов ИУС	8.8	да	да*	да	да			

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки применяют основные и вспомогательные средства поверки, перечень которых приведен в таблице 2.
- 3.2 Средства поверки должны быть внесены в Государственный реестр средств измерений утверждённых типов и иметь действующие свидетельства о поверке и(или) знаки поверки.

Таблица 1 – Средства поверки

Наименование и	Основные метрологические харак	геристики
тип средства поверки	диапазон измерений (воспроизведений)	погрешность, класс точности
Термогигрометр ИВА-6А-Д	 Диапазон измерений температуры от 0 до 60 °C; диапазон измерений влажности от 0 до 98 %; диапазон измерений атмосферного давления от 86 до 106 кПа 	$\Delta = \pm 0.3$ °C; $\delta = \pm 0.1$ %; $\Delta = \pm 2.5$ κΠα
Мегаомметр М4100/3	Диапазон измерений сопротивления изоляции от 0 до 100 МОм при напряжении 500 В	Класс точности 1,0
Измеритель сопротивления заземлений Ф4103-М1	Диапазон измерений сопротивления от 0 до 0,3 Ом	Класс точности 4,0
Калибратор электрических сигналов СА71	 Диапазон воспроизведения сигналов силы постоянного тока от 0 до 24 мА; диапазон воспроизведения сигналов напряжения постоянного тока от 0 до 110 мВ 	$\Delta = \pm (0.25 \% \text{ X+3}) \text{ MKA};$ $\Delta = \pm (0.02 \% \text{ X+15}) \text{ MKB}$
Радиочасы МИР РЧ-02		шности синхронизации шкале координированного

Примечания

- 1) В таблице приняты следующие обозначения: Δ абсолютная погрешность, единица величины; δ относительная погрешность, %; X значение воспроизводимой величины, деленное на 100 %.
- При проведении поверки допускается замена указанных средств поверки аналогичными, обеспечивающими проверку метрологических характеристик ИК ИУС с требуемой точностью

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 Поверка ИУС должна выполняться специалистами, имеющими удостоверение на право работы с напряжением до 1000 В (квалификационная группа по электробезопасности не ниже третьей) и освоившими работу с измерительными каналами ИУС.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:
- ГОСТ ІЕС 60950-1-2011 Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования;
 - -Правила устройств электроустановок, раздел I, III, IV;
 - Правила технической эксплуатации электроустановок потребителей;
- Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М – 016 – 2001. РД 153-34.0-03.150-00;
 - СНиП 3.05.07-85 Системы автоматизации;
 - эксплуатационная документация на средства измерений и компоненты ИУС.

6 УСЛОВИЯ ПОВЕРКИ

6.1 Средствам измерений, используемым при проведении поверки, должны быть обеспечены следующие условия:

- температура окружающего воздуха, °С	от 15 до 25;
- относительная влажность окружающего воздуха, при 25 °C, %	от 40 до 80;
- атмосферное давление, кПа	от 84 до 106,7;
- напряжение питающей сети переменного тока, В	от 198 до 242;
- частота питающей сети, Гц	от 49 до 51.

6.2 Условия эксплуатации:

а) для измерительных и связующих компонентов ИУС:

- температура окружающего воздуха для преобразователей давления измерительных, °C

от 0 до 40;

от 0 до 60:

– температура окружающего воздуха для преобразователей температуры, °С

- относительная влажность воздуха, при 25 °C, % от 40 до 90; - атмосферное давление, кПа от 84 до 106.7;

б) для комплексных и вычислительных компонентов ИУС:

- температура окружающего воздуха, °C от 15 до 30; от 40 до 80; от 40 до 80; от 40 до 80; от 84 до 106.7.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 На поверку ИУС представляют следующие документы:
- Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 450 среднесортного цеха АО «ЕВРАЗ ЗСМК» Паспорт (паспорт);
- РИЦ204-00-ИЭ.01 ОАО «ЕВРАЗ ЗСМК». Среднесортный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательной печи № 3 стана 450». Инструкция по эксплуатации для технологического персонала ССЦ;
- РИЦ204-00-ИЭ.02 ОАО «ЕВРАЗ ЗСМК». Среднесортный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательной печи № 3 стана 450». Инструкция по эксплуатации для обслуживающего персонала ССЦ;
- МП 255-16 ГСИ. Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 450 среднесортного цеха АО «ЕВРАЗ ЗСМК. Методика поверки.
 - свидетельство о предыдущей поверке ИУС (при выполнении периодической поверки):
- документы, удостоверяющие поверку средств измерений, входящих в состав измерительных каналов ИУС;
 - эксплуатационную документацию на ИУС и ее компоненты;
 - эксплуатационную документацию на средства измерений, применяемые при поверке.
- 7.2 Перед выполнением операций поверки необходимо изучить настоящий документ, эксплуатационную документацию на поверяемую ИУС. Непосредственно перед выполнением поверки необходимо подготовить средства поверки к работе в соответствии с их эксплуатационной документацией.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Рассмотрение документации
- 8.1.1 Проверяют наличие следующей документации:

- Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 450 среднесортного цеха АО «ЕВРАЗ ЗСМК» Паспорт;
- РИЦ204-00-ИЭ.01 ОАО «ЕВРАЗ ЗСМК». Среднесортный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательной печи № 3 стана 450». Инструкция по эксплуатации для технологического персонала ССЦ;
- РИЦ204-00-ИЭ.02 ОАО «ЕВРАЗ ЗСМК». Среднесортный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательной печи № 3 стана 450». Инструкция по эксплуатации для обслуживающего персонала ССЦ;
- документы, удостоверяющие поверку средств измерений, входящих в состав измерительных каналов ИУС;
 - свидетельство о предыдущей поверке ИУС (при проведении периодической поверки);
 - эксплуатационная документация на ИУС и ее компоненты;
- 8.1.2 Проверяют соответствие перечня измерительных каналов, приведенного в паспорте, перечню приложения А настоящей методики поверки.
- 8.1.3 Эксплуатационная документация на средства измерений, применяемые при поверке ИУС, должна содержать информацию о порядке работы, их технических и метрологических характеристиках.

Результаты проверки положительные, если вся вышеперечисленная документация в наличии, перечень измерительных каналов, приведенный в паспорте, соответствует перечню приложения А настоящей методики поверки, все средства поверки имеют документально подтвержденную пригодность для использования в операциях поверки, все средства измерений ИК ИУС имеют действующие свидетельства и (или) знаки поверки.

8.2 Внешний осмотр

- 8.2.1 При внешнем осмотре проверяют соответствие ИУС нижеследующим требованиям:
- соответствие комплектности ИК ИУС перечню, приведенному в паспорте и в таблице А.1 приложения А настоящей методики поверки;
- отсутствие механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- отсутствие обрывов и нарушения изоляции кабелей и жгутов, влияющих на функционирование ИУС;
 - наличие и прочность крепления разъёмов и органов управления:
- отсутствие следов коррозии, отсоединившихся или слабо закрепленных элементов схемы.
- 8.2.2 Внешним осмотром проверяют соответствие количества и месторасположения APM оператора, контроллера программируемого Simatic S7-300 (ПЛК) данным, приведённым в паспорте и руководстве пользователя.

Результат проверки положительный, если выполняются все вышеперечисленные требования. При оперативном устранении недостатков, замеченных при внешнем осмотре, поверка продолжается по следующим операциям.

- 8.3 Проверка электрического сопротивления цепи защитного заземления
- 8.3.1 Проверку электрического сопротивления цепи защитного заземления проводят только у тех компонентов ИК ИУС, которые в соответствии с эксплуатационной документацией должны быть подключены к защитному заземлению.
- 8.3.2 Значение электрического сопротивления между заземляющим болтом (винтом, шпилькой) и каждой доступной прикосновению металлической нетоковедущей частью компонента ИК ИУС, которая может оказаться под напряжением, не должно превышать 0,1 Ом.
- 8.3.3 Электрическое сопротивление цепи защитного заземления измеряют измерителем сопротивления заземления или определяют по протоколам испытаний компонентов ИК ИУС.

Результаты проверки положительные, если значение электрического сопротивления цепи защитного заземления, измеренное или зафиксированное в протоколах, не превышает 0,1 Ом.

- 8.4 Проверка условий эксплуатации компонентов ИУС
- 8.4.1 Проводят сравнение фактических климатических условий в помещениях, где размещены компоненты ИУС, с данными, приведенными в 6.2 настоящей методики поверки и эксплуатационной документации на эти компоненты.

Результаты проверки положительные, если фактические условия эксплуатации каждого компонента ИУС удовлетворяют рабочим условиям применения, приведенным в разделе 6 настоящей методики поверки и эксплуатационной документации.

- 8.5 Опробование
- 8.5.1 Перед выполнением экспериментальных исследований необходимо подготовить ИУС и средства измерений к работе в соответствии с указаниями эксплуатационной документации.
- 8.5.2 Перед опробованием ИУС в целом, необходимо выполнить проверку функционирования отдельных компонентов измерительных каналов ИУС.
- 8.5.3 При проверке функционирования измерительных и комплексных компонентов ИУС проверяют работоспособность индикаторов, отсутствие кодов ошибок или предупреждений об авариях.
 - 8.5.4 При опробовании связующих компонентов ИУС проверяют:
 - наличие сигнализации о включении в сеть технических средств ИУС;
- поступление по линиям связи информации об измеряемых параметрах технологического процесса и состоянии технических средств ИУС;
 - наличие сигнализации об обрыве линий связи.
 - 8.5.5 При опробовании вычислительных компонентов ИУС:
- проверяют правильность функционирования APM оператора: мониторы должны быть включены, исправность клавиатуры и манипулятора «Мышь» оценивают, выполнив переключение между экранными формами ПО, установленного на компьютерах APM оператора;
- проверяют отображение главной мнемосхемы и возможность вызова через неё остальных экранных форм программного обеспечения (рисунок 1);
- -выполняют первичное тестирование программного обеспечения ИУС APM оператора: опрос измерительных преобразователей и приборов, модулей ввода аналоговых сигналов ПЛК, установление связи с оборудованием ИУС и т.д.

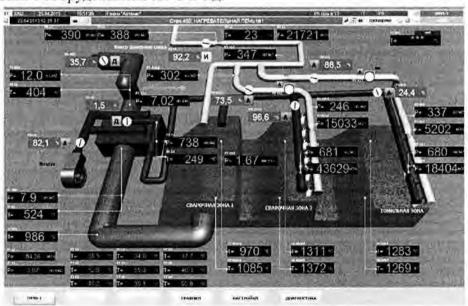


Рисунок 1 – Отображение значений технологических параметров на экранной форме «Стан 450. Нагревательная печь «№ 1»

8.5.6 Опробование измерительных каналов ИУС в целом, проводят средствами программного обеспечения АРМ оператора. Выполняют ряд тестов или операций, обеспечивающих проверку работы ПО ИУС в каждом из предусмотренных режимов. При каждом выполнении теста или операции проводят сравнение полученных результатов с описанием, приведённым в руководстве пользователя.

С АРМ оператора проверяют выполнение следующих функций:

- отображение значений параметров технологического процесса, текущей даты и времени:
- отображение архивных данных за семь суток;
- отображение журнала сообщений;
- отображение сигналов предупредительной и аварийной сигнализации при выходе параметров за установленные пределы;

диагностика оборудования ИУС.

Результаты проверки положительные, если в журнале отсутствуют сообщения об авариях, по всем измерительным каналам ИУС на экранных формах программного обеспечения АРМ оператора отображаются значения параметров технологического процесса в установленных единицах и диапазонах измерений.

- 8.6 Подтверждение соответствия программного обеспечения ИУС
- 8.6.1 Проверка идентификационных данных ПО ИУС
- 8.6.1.1 Проверку идентификационных данных программного обеспечения проводят в процессе штатного функционирования ИУС. Прикладное ПО ИУС включает программное обеспечение, функционирующее на АРМ оператора, и программное обеспечение ПЛК, являющееся метрологически значимой частью ПО ИУС.
- 8.6.1.2 К идентификационным данным метрологически значимой части программного обеспечения ИУС относится идентификационное наименование проекта ПО ПЛК: «TipPech REAL P1».
- 8.6.1.3 Проверку идентификационного наименования ПО ПЛК проводят с помощью APM оператора под правами доступа пользователя «администратор», получив доступ к системе программирования встроенного ПО ПЛК STEP 7.

Результаты проверки положительные, если идентификационное наименование проекта метрологически значимой части ПО ИУС соответствует данным, приведённым в 8.6.1.3 настоящей методики поверки и описании типа средства измерений.

- 8.6.2 Проверка защиты ПО ИУС и данных от преднамеренных и непреднамеренных изменений
- 8.6.2.1 Проверку защиты ПО ИУС от несанкционированного доступа на аппаратном уровне проводят проверкой ограничения доступа к запоминающим устройствам ИУС и наличие средств механической защиты замков на дверях шкафов, в которых установлены модули ПЛК и системные блоки АРМ оператора.

Результаты проверки положительные, если защита программного обеспечения и данных обеспечивается конструкцией ИУС, на дверях шкафов имеются замки.

- 8.6.2.2 Проверку защиты ПО ИУС и данных от преднамеренных и непреднамеренных изменений на программном уровне проводят на APM оператора проверкой наличия и правильности:
- реализации алгоритма авторизации пользователя ПО APM оператора (отсутствие доступа к ПО ИУС и данным при вводе неверного пароля);
- функционирования средств обнаружения и фиксации событий, подлежащих регистрации в журнале сообщений;
- реализации разграничения полномочий пользователей, имеющих различные права доступа к программному обеспечению ИУС и данным.

Результаты проверки положительные, если осуществляется авторизованный доступ к выполнению функций ПО APM оператора, в журнале сообщений фиксируются события и аварии.

- 8.7 Определение погрешности измерений и синхронизации времени
- 8.7.1 Проверку системы обеспечения единого времени ИУС проводят с использованием радиочасов МИР РЧ-02, хранящих шкалу времени, синхронизированную с метками шкалы координированного времени государственного первичного эталона Российской Федерации UTC (SU). Радиочасы МИР РЧ-02 подключают к компьютеру, в соответствии с эксплуатационной документацией, выполняют настройку с использованием программы «Конфигуратор радиочасов МИР РЧ-02» (конфигуратор).
- 8.7.2 Определение погрешности измерений и синхронизации времени проводят проверкой расхождения между шкалами времени внутренних часов компьютеров APM оператора и радиочасов следующим образом:
 - переводят ПО APM оператора в режим отображения текущего времени;
- одновременно фиксируют показания «ВРЕМЯ UTС» во вкладке «Синхронизация» конфигуратора и текущее время, отображаемое на APM оператора;
- определяют разницу (без учёта количества часов) между шкалами времени часов компьютера APM оператора и временем UTC (SU).

Результаты проверки положительные, если синхронизация времени осуществляется успешно, расхождение между шкалами времени внутренних часов компьютеров APM оператора и радиочасов, привязанных к шкале координированного времени UTC (SU), не превышает 5 с.

- 8.8 Проверка метрологических характеристик измерительных каналов ИУС
- 8.8.1 Метрологические характеристики (МХ) ИК ИУС определяют расчётноэкспериментальным способом (согласно МИ 2439). Проверку метрологических характеристик измерительных и комплексных компонентов ИК ИУС (измерительных преобразователей и приборов, модулей ввода аналоговых сигналов ПЛК) выполняют экспериментально в соответствии с утверждёнными методиками поверками на каждый тип средства измерений. Метрологические характеристики ИК рассчитывают по МХ компонентов ИУС в соответствии с методикой, приведённой в 8.8.4 настоящей методики поверки. Допускается не проводить расчет фактической погрешности ИК ИУС при условии, что подтверждены метрологические характеристики компонентов ИК ИУС. Результаты проверки МХ ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.
 - 8.8.2 Проверка метрологических характеристик компонентов ИК ИУС
- 8.8.2.1 Метрологические характеристики измерительных и комплексных компонентов ИУС принимают равными значениям, приведенным в эксплуатационной документации (паспорт, формуляр и др.) на средства измерений при наличии на них свидетельств и (или) знаков поверки.
- 8.8.2.2 Для термоэлектрических преобразователей ТХА, ТПП классов допуска 2, пределы допускаемого отклонения сопротивления от НСХ выбирают в соответствии с ГОСТ 6616. Для термопреобразоватей сопротивления ТСМУ пределы допускаемого отклонения сопротивления от НСХ выбирают в соответствии с ГОСТ 6651.
- 8.8.2.3 Значения основной погрешности компонента ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.
 - 8.8.3 Исходные допущения для определения погрешности измерительных каналов ИУС

Погрешности компонентов ИУС относятся к инструментальным погрешностям.

Факторы, определяющие погрешность, - независимы.

Погрешности компонентов ИУС – не коррелированны между собой.

Законы распределения погрешностей компонентов ИУС – равномерные.

8.8.4 Методика расчета основной погрешности ИК ИУС

8.8.4.1 Погрешности ИК температуры нормированы в абсолютной форме. Погрешности ИК давления и разрежения, в состав которых входят датчики давления, нормированы в приведённой форме. Погрешности ИК расхода нормированы в относительной форме.

8.8.4.2 Границы основной абсолютной погрешности ИК температуры $\Delta_{\text{ИК осн}}$, °C, определяют, исходя из состава ИК ИУС, по формуле:

$$\Delta_{\text{ИК осн}} = \Delta_{\text{ИПТ}} + \Delta_{\text{ПЛК}}.$$
 (1)

где $\Delta_{\text{ИПТ}}$ – основная абсолютная погрешность преобразователей температуры, °C:

 $\Delta_{\Pi \Pi K}$ – основная абсолютная погрешность модуля ввода аналоговых сигналов ПЛК, °С.

Для расчёта погрешности измерительного канала по формуле (1) погрешность компонента ИК ИУС переводят в абсолютную форму Δ , единица величины, для случая её представления в приведённой форме γ , %, по формуле:

$$\Delta = \gamma \cdot \frac{X_{\rm B} - X_{\rm H}}{100} \,, \tag{2}$$

где X_B и X_H – верхний и нижний пределы измерений компонента ИК ИУС, единица величины.

8.8,4.3 Границы основной относительной погрешности ИК объемного расхода $\delta_{\rm HK_ocu}$, %, определяют, исходя из состава ИК ИУС (в соответствии с РМГ 62), по формуле:

$$\delta_{\text{MK,och}} = K \cdot \sqrt{\delta_{\text{TIMT}}^2 + \delta_{\text{TIME}}^2 + \delta_{\text{acc}}^2 + \delta_{\text{JC}}^2} , \qquad (5)$$

где K = 1.2:

 $\delta_{\Pi \Pi \Pi}$ — основная относительная погрешность измерительных преобразователей, приборов, аппаратуры виброконтроля, %;

 $\delta_{\Pi J K}$ – основная относительная погрешность модуля ввода аналоговых сигналов ПЛК, %:

 $\delta_{a,w}$ – относительная погрешность алгоритма (при наличии), %;

 $\delta_{\rm DC}$ – относительная погрешность линии связи, %.

Примечание — Погрешность линии связи определяется потерями в линиях связи. Между измерительными и комплексными компонентами линии связи построены из кабелей контрольных и (или) кабелей управления. Параметры линий связи удовлетворяют требованиям ГОСТ 18404.0 и ГОСТ 26411. Длина линий связи небольшая, входное сопротивление модулей ПЛК велико, поэтому потери в линиях связи пренебрежимо малы. Между комплексными и вычислительными компонентами построен цифровой канал связи. Применены сетевые технологии Ethernet, Profibus DP. Передача данных по каналам связи Ethernet, Profibus DP имеет класс достоверности 11 и относится к S1 классу организации передачи (в соответствии с ГОСТ Р МЭК 870-5-1). Принимаем погрешность линии связи во всех ИК ИУС равной нулю.

Для расчёта погрешности ИК ИУС по формуле (5) погрешность компонента ИК ИУС переводят в относительную форму δ , %, для случая её представления в абсолютной или приведённой формах по формуле:

$$\delta = \frac{\Delta}{X_{\text{max}}} \cdot 100 = \gamma \cdot \frac{X_{\text{B}} - X_{\text{H}}}{X_{\text{max}}} \,, \tag{6}$$

где Δ – пределы допускаемой абсолютной погрешности компонента ИК ИУС, единица величины;

 у – пределы допускаемой приведённой погрешности компонента ИК ИУС, нормированной для диапазона измерений;

 $X_{\rm B}$ и $X_{\rm H}$ — верхний и нижний пределы диапазона измерений компонента ИК ИУС (в тех же единицах, что и $X_{\rm HOM}$);

Примечание — Если приведённая погрешность γ нормирована для верхнего предела диапазона измерений, то $X_{\rm H}$ = 0.

X_{ном} – номинальное значение измеряемой величины, для которой рассчитывают границы относительной погрешности измерений, единица величины.

В соответствии с ГОСТ 8.508 относительную погрешность измерений вычисляют в точках $X_{\text{ном}}$, соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений, и выбирают максимальное значение (i = 1, ..., 5).

Для модулей ввода аналоговых сигналов ПЛК, погрешность которых нормирована в приведённой форме, необходимо определить значение силы тока, соответствующей номинальному значению. Расчёт значения силы тока I_{помі}, мА, соответствующей номинальному значению измеряемой величины X_{помі}, единица величины, проводят:

а) для диапазона входного сигнала модуля ПЛК (0-5) мА по формуле:

$$I_{\text{nom}} = \frac{D_{\text{сигнали}} \cdot X_{\text{nom}}}{D_{\text{ПИП}}} , \qquad (3)$$

где $D_{\text{сигнала}}$ – разница между верхним и нижним пределами диапазона измерений входного сигнала модуля ПЛК, мА;

 $D_{\Pi U\Pi}$ – разница между верхним и нижним пределами диапазона измерений преобразователей (в тех же единицах, что и X_{nom}):

б) для диапазона входного сигнала модуля ПЛК (4 – 20) мА по формуле:

$$I_{\text{HOM}} = \frac{D_{\text{CHIPHATA}} \cdot X_{\text{BOM}}}{D_{\text{HATA}}} + 4. \tag{4}$$

Примечание – Числовые значения пределов диапазонов измерений преобразователей приведены в эксплуатационной документации (паспорт) на средства измерений. Значение сопротивления на выходе термопреобразователей сопротивления определяют по номинальной статической характеристике преобразования в соответствии с ГОСТ 6651, а значение напряжения постоянного тока на выходе преобразователей термоэлектрических – в соответствии с ГОСТ Р 8.585.

8.8.4.4 Границы основной приведённой погрешности ИК давления и разрежения, $\gamma_{\rm ИК, ccn}$, %, определяют следующим образом:

- а) переводят погрешность компонентов ИК ИУС из приведённой формы в относительную по формуле (6) согласно ГОСТ 8.508 в точках $X_{\text{номі}}$, соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений;
- б) вычисляют по формуле (5) основную относительную погрешность ИК ИУС для каждой i-ой точки диапазона измерений $\delta_{\rm ИК \ осно}$, %:
- в) переводят значения основной погрешности ИК ИУС, соответствующие *i*-ым точкам диапазона, из относительной формы в приведённую по формуле:

$$\gamma_{\text{MK_ocm}} = \frac{\delta_{\text{MK_ocm}} \cdot X_{\text{MK_nom}}}{X_{\text{B}} - X_{\text{H}}}, \tag{7}$$

где $X_{\rm B}$ и $X_{\rm H}$ — верхний и нижний пределы измерений ИК ИУС (в тех же единицах, что и $X_{\rm ИК_номі}$); $X_{\rm ИК_номі}$ — номинальное значение ИК ИУС, соответствующее i-ой точке диапазона измерений;

г) выбирают из пяти значений, полученных по формуле (7), максимальное и приписывают его основной приведённой погрешности ИК ИУС.

Рассчитанные (фактические) значения погрешности ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.

Результаты проверки положительные, если фактические значения погрешностей измерительных каналов не превышают границ допускаемых погрешностей, приведённых в таблице A.1 приложения A настоящей методики поверки.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки оформляют протоколом по форме, приведенной в приложении Б настоящей методики поверки.
- 9.2 При положительных результатах поверки ИУС оформляют свидетельство о поверке. Состав и метрологические характеристики измерительных каналов ИУС приводят в Приложении к свидетельству о поверке по форме, приведенной в приложении В настоящей методики поверки. Каждая страница Приложения к свидетельству о поверке должна быть заверена подписью поверителя. Знак поверки наносят на свидетельство о поверке.
- 9.3 При положительных результатах первичной поверки (после ремонта или замены компонентов ИК ИУС на однотипные поверенные), проведённой в объёме проверки в части вносимых изменений, оформляют новое свидетельство о поверке ИУС при сохранении без изменений даты очередной поверки.
- 9.4 Допускается на основании письменного заявления собственника ИУС проведение поверки отдельных измерительных каналов из перечня, приведённого в описании типа ИУС, с обязательным указанием в Приложении к свидетельству о поверке информации о количестве и составе поверенных каналов.
- 9.5 Отрицательные результаты поверки оформляют извещением о непригодности, Измерительные каналы ИУС, прошедшие поверку с отрицательным результатом, не допускаются к использованию.

приложение а

(обязательное)

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНЫХ КАНАЛОВ ИУС

6.1		Диапазон	СИ, входящие	в состав ИК 1	ИУС	Основная п	огрешность ИК ИУС	
Но- мер ИК ИУС	Наименование ИК ИУС	измерений физической величины, единица измерений	Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности	
	Температура газа	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C от 0 до 600 °C, $\Delta = \pm 0.004$ °C св. 600 до 1300 °C		$\Delta = \pm 5.0 ^{\circ}\text{C}$ or 0 go 100 $^{\circ}\text{C}$,		
4.	во 2-й сварочной зоне (СЗ) (передний конец)	от 0 до 1300°C	Модуль ввода аналоговых сигналов SM331 6ES7 331-7PF11-0AB0 контроллера программируемого SIMATIC S7-300 (далее – Модуль 6ES7 331-7PF11-0AB0)	15772-11	$\Delta = \pm 2.5$ °C от 0 до 100 °C, $\Delta = \pm 2.0$ °C св. 100 до 1300 °C		$\Delta = \pm 4.4$ °C св. 100 до 600 °C, $\Delta = \pm (2.0 + 0.004 \cdot 1)$ °C св. 600 до 1300 °C	
2	Температура газа	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C от 0 до 600 °C $\Delta = \pm 0.004$ ·t °C св. 600 до 1300 °C		$\Delta = \pm 5.0 ^{\circ}\text{C}$ от 0 до 100 $^{\circ}\text{C}$, $\Delta = \pm 4.4 ^{\circ}\text{C}$	
£	конец)	2-и СЗ (заднии 1300°C		15772-11	$\Delta = \pm 2.5$ °C от 0 до 100 °C $\Delta = \pm 2.0$ °C св. 100 до 1300 °C		св. 100 до 600 °C, $\Delta = \pm (2.0 + 0.004 \cdot t)$ °C св. 600 до 1300 °C	

To. 1		Диапазон	СИ, входящие	е в состав ИК 1	ИУС	Основная п	огрешность ИК ИУС	
Но- мер ИК ИУС	ер Наименование ИК физич К ИУС велич УС един		измерений физической величины, единица измерений	Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности
3	Температура газа в томильной зоне	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C от 0 до 600 °C $\Delta = \pm 0.004$ ·t °C св. 600 до 1300 °C		$\Delta = \pm 5.0$ °C oτ 0 до 100 °C, $\Delta = \pm 4.4$ °C	
3	(ТЗ) (передний конец)	1300 °C	Модуль 6ES7 331-7PF11-0AB0	15772-11	$\Delta = \pm 2,5 ^{\circ}\text{C}$ от 0 до 100 $^{\circ}\text{C}$ $\Delta = \pm 2,0 ^{\circ}\text{C}$ св. 100 до 1300 $^{\circ}\text{C}$		св. 100 до 600 °C, $\Delta = \pm (2.0 + 0.004 \cdot t)$ °C св. 600 до 1300 °C	
	Температура газа	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C от 0 до 600 °C $\Delta = \pm 0.004$ ·t °C св. 600 до 1300 °C		$\Delta = \pm 5.0$ °C от 0 до 100 °C, $\Delta = \pm 4.4$ °C св. 100 до 600 °C, $\Delta = \pm (2.0 + 0.004 \cdot t)$ °C св. 600 до 1300 °C	
4	в ТЗ (задний конец)	1300 °C	Модуль 6ES7 331-7PF11-0AB0	15772-11	Δ = ± 2,5 °C oτ 0 до 100 °C Δ = ± 2,0 °C cb. 100 до 1300 °C			
5	Температура газа в	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C ot 0 go 600 °C $\Delta = \pm 0.004$ ·t °C cb. 600 go 1300 °C		$\Delta = \pm 5.0 ^{\circ}\text{C}$ or 0 go 100 $^{\circ}\text{C}$, $\Delta = \pm 4.4 ^{\circ}\text{C}$	
3	конец)	1-й СЗ (передний 1300 °С		15772-11	$\Delta = \pm 2.5$ °C от 0 до 100 °C $\Delta = \pm 2.0$ °C св. 100 до 1300 °C		св. 100 до 600 °C, $\Delta = \pm (2.0 + 0.004 \cdot t)$ °C св. 600 до 1300 °C	

		Диапазон	СИ, входящи	е в состав ИК І	ИУС	Основная п	огрешность ИК ИУС	
Но- мер ИК ИУС	Наименование ИК ИУС	измерений физической величины, единица измерений	Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности	
	Температура газа в		Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C от 0 до 600 °C $\Delta = \pm 0.004$ ·t °C св. 600 до 1300 °C		$\Delta = \pm 5.0$ °C от 0 до 100 °C, $\Delta = \pm 4.4$ °C св. 100 до 600 °C, $\Delta = \pm (2.0 + 0.004 \cdot t)$ °C св. 600 до 1300 °C	
6	1-й СЗ (задний конец)	1300 °C	Модуль 6ES7 331-7PF11-0AB0	15772-11	$\Delta = \pm 2.5$ °C от 0 до 100 °C $\Delta = \pm 2.0$ °C св. 100 до 1300 °C			
7	Температура воздуха до	от 0 до 1000°C	Преобразователь термоэлектрический ТХА-1192	31930-07	$\Delta = \pm 2.5 ^{\circ}\text{C}$ or 0 до 333 $^{\circ}\text{C}$ $\Delta = \pm (0.0075 \cdot \text{t}) ^{\circ}\text{C}$ cb.333 до 1000 $^{\circ}\text{C}$		Δ = ± 4,5 °C or 0 до 333 °C Δ = ± (2,0+0,0075·t) °C	
	рекуператора		Модуль 6ES7 331-7PF11-0AB0	15772-11	Δ = ± 2,0 °C		св.333 до 1000 °C	
8	Температура воздуха после рекуператора	от 0 до 1000°C	Преобразователь термоэлектрический TXA-1192	31930-07	$\Delta = \pm 2.5$ °C or 0 до 333 °C $\Delta = \pm (0.0075 \cdot t)$ °C cb.333 до 1000 °C		$\Delta = \pm 4.5 ^{\circ}\text{C}$ or 0 до 333 $^{\circ}\text{C}$ $\Delta = \pm (2.0 + 0.0075 \cdot t) ^{\circ}\text{C}$	
	(защита рекуператора)		Модуль 6ES7 331-7PF11-0AB0	15772-11	Δ = ± 2,0 °C		св.333 до 1000 °C	
9	Температура воздуха на печь	от 0 до 1000°C	Преобразователь термоэлектрический TXA-1192	31930-07	$\Delta = \pm 2.5$ °C ot 0 до 333 °C $\Delta = \pm (0.0075 \cdot t)$ °C cb.333 до 1000 °C		$\Delta = \pm 4.5 ^{\circ}\text{C}$ or 0 до 333 $^{\circ}\text{C}$ $\Delta = \pm (2.0+0.0075 \cdot \text{t}) ^{\circ}\text{C}$	
	воздуха на печь	3474.330	Модуль 6ES7 331-7PF11-0AB0	15772-11	Δ = ± 2,0 °C		св.333 до 1000 °C	

		Диапазон	СИ, входящие в	в состав ИК	ИУС	Основная п	огрешность ИК ИУС
Но- мер ИК ИУС	Наименование ИК ИУС	измерений физической величины, единица измерений	Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности
10	Температура дыма	от 0 до 1100°C	Преобразователь термоэлектрический ТХА-1192	31930-07	$\Delta = \pm 2.5 ^{\circ}\text{C}$ ot 0 до 333 $^{\circ}\text{C}$ $\Delta = \pm (0.0075 \cdot \text{t}) ^{\circ}\text{C}$ cb.333 до 1000 $^{\circ}\text{C}$		$\Delta = \pm 4.5 ^{\circ}\text{C}$ or 0 до 333 $^{\circ}\text{C}$ $\Delta = \pm (2.0 + 0.0075 \cdot t) ^{\circ}\text{C}$
			Модуль 6ES7 331-7PF11-0AB0	15772-11	Δ = ± 2,0 °C		св.333 до 1000 °C
11	Расход газа во 2-й СЗ	от 1000 до 20000 м ³ /ч	Преобразователь давления измерительный Sitrans P DSIII 7MF4433-1BA02	45743-10	$\gamma = \pm (0.071 + +0.0029 \cdot P_{\text{max}}/P_{\text{B}} +) \%$		$\delta = \pm 3.0 \%$
	2-n C3	20000 M /4	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
12	Расход воздуха во 2-й СЗ	от 3150 до 63000 м ³ /ч	Преобразователь давления измерительный Sitrans P DSIII 7MF4433-1BA02	45743-10	$\gamma = \pm (0.071 + +0.0029 \cdot P_{max}/P_{B} +) \%$		δ = ± 3,0 %
	B0 2 H C3	03000 M / 1	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
13	Расход газа в ТЗ	от 800 до 16000 м ³ /ч	Преобразователь давления измерительный Sitrans P DSIII 7MF4433-1BA02	45743-10	$\gamma = \pm (0.071 + +0.0029 \cdot P_{\text{max}}/P_{\text{B}} +) \%$		$\delta = \pm 3.0 \%$
			Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
14	Расход воздуха в ТЗ	от 1250 до 25000 м ³ /ч	Преобразователь давления измерительный Sitrans P DSIII 7 MF4433-1BA02	45743-10	$\gamma = \pm (0.071 + +0.0029 \cdot P_{max}/P_{R} +) \%$		$\delta = \pm 3.0 \%$
		25000 M ⁻ /4	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		

Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 450 среднесортного цеха АО «ЕВРАЗ ЗСМК». Методика поверки

. 1		Диапазон	СИ, входящие в	в состав ИК И	1УС	Основная пог	решность ИК ИУС	
Но- мер ИК ИУС	Наименование ИК ИУС	измерений физической величины, единица измерений	Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности	
15	Давление газа во 2-й СЗ	от 0 до 1000 кгс/м²	Преобразователь давления измерительный Sitrans P210 7FM1566-3AA00	51587-12	$\gamma=\pm~0.5~\%$		$\gamma = \pm 0.8 \%$	
	во 2-и С3		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			
16	Давление смешанного газа во 2-й СЗ после	от 0 до 1000 кгс/м²	Преобразователь давления измерительный Sitrans P210 7FM1566-3AA00	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$	
	отсечного клапана и МЭО	KIC/M	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			
17	Давление воздуха во 2-й СЗ	от 0 до 1000 кгс/м²	Преобразователь давления измерительный Sitrans P2107FM1566-3AA00	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$	
	2-N C3	KIC/M	KTC/M	INTO HAZITI	15772-11	$\gamma = \pm 0.5 \%$		
18	Давление газа в ТЗ	от 0 до 1000 кгс/м²	Преобразователь давления измерительный Sitrans P210 7FM1566-3AA00	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$	
	Krc/M	KI'C/M	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			
19	о смешанного газа в	от 0 до 1000 кгс/м²	Преобразователь давления измерительный Sitrans P210 7FM1566-3AA00	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$	
13 no	ТЗ после отсечного клапана и МЭО	KI'C/M	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$,		

		Диапазон	СИ, входящие в	в состав ИК І	1УС	Основная пог	решность ИК ИУС
Но- мер ИК ИУС	Наименование ИК ИУС	измерений физической величины, единица измерений	Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности
20	Давление воздуха в	от 0 до 1000	Преобразователь давления измерительный Sitrans P210 7FM1566-3AA00	льный $51587-12$ $\gamma = \pm$	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$
	Т3	кгс/м	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
21	Давление газа на печь	от 0 до 1000 кгс/м²	Преобразователь давления измерительный Sitrans P210 7FM1566-3AA00	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$
	10.00	334.30	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
22	Давление воздуха	от 0 до 1000 кгс/м ²	Преобразователь давления измерительный Sitrans P210 7FM1566-3AA00	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$
	на печь		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
23	Давление воздуха	воздуха от 0 до 63	Датчик давления Метран 150 CG0	32854-09	$\gamma=\pm~0.1~\%$		
2.5	до рекуператора	кгс/м²	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.5 \%$
2.1	Давление воздуха	от 0 до 63	Датчик давления Метран 150 CG0	32854-09	$\gamma = \pm 0.1 \%$		
24	после рекуператора		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.5 \%$
25	Давление-	от минус	Датчик давления Метран 150 CG0	32854-09	$\gamma = \pm (0.05 \cdot P_{\text{max}}/P_{\text{B}})$		or = + 1 0 04
25	разрежение газа в печи	3,15 до 3,15 мм в ст.	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		$\gamma = \pm 1.0 \%$

		Диапазон	СИ, входящие в	еостав ИК 1	ИУС	Основная пог	решность ИК ИУС			
Но- мер ИК ИУС	Наименование ИК ИУС	измерений физической величины, единица измерений	Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности			
26	Давление азота на	от 0 до 16	Преобразователь давления измерительный Sitrans P220 7FM1567-3CB00	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$			
	печь кгс/см2	кгс/см	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$					
27	Расход воды на печь	от 25 до 500 м ³ /ч	Преобразователь давления измерительный Sitrans P DSIII 7MF4433-1EA02	30883-05	$\gamma = \pm (0.071 + +0.0029 \cdot P_{\text{max}}/P_{\text{B}} +) \%$		$\delta = \pm 3.0 \%$			
		М /Ч	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$					
28	Расход газа на печь	от 1250 до	Преобразователь давления измерительный Sitrans P DSIII 7MF4433-1BA02	45743-10	$\gamma = \pm (0.071 + +0.0029 \cdot P_{\text{max}}/P_{\text{B}} +) \%$		$\delta = \pm 3.0 \%$			
		25000 м²/ч	25000 м /ч	25000 м ³ /ч	25000 м /ч	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
29	Давление газа на печь на общей	от 0 до 1000 кгс/м²	Преобразователь давления измерительный Sitrans P210 7MF1566-3AA00	51587-12	$\gamma = \pm 0.5 \%$		$\gamma=\pm~0.8~\%$			
	диафрагме	KI C/M	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$					
30	Давление воды на	от 0 до 6	Преобразователь давления измерительный Sitrans P220 7FM1567-3BG00	51587-12	$\gamma = \pm 0.5 \%$		0.000			
50	печь кгс/см2	Krc/cm ²	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$			

la de		Диапазон	СИ, входящие в	в состав ИК И	IУC	Основная пог	решность ИК ИУС
Но- мер ИК ИУС	Наименование ИК ИУС	измерений физической величины, единица измерений	Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности
31	Температура газа на печь	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		$\Delta = \pm 0.6$ °C
			Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
32	Температура воды на охлаждение 1	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		$\Delta = \pm 0.6$ °C
	балки		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
33	Температура воды на охлаждение 2	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		Δ=±0,6 °C
	балки		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
34	Температура воды на охлаждение 3	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		$\Delta = \pm 0.6$ °C
	балки		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
35	Температура воды на охлаждение 4	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		$\Delta = \pm 0.6$ °C
	балки	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
36		от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		$\Delta = \pm 0.6$ °C
		100 %	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		

Но- мер ИК ИУС	Наименование ИК ИУС	Диапазон измерений физической величины, единица измерений	СИ, входящие в состав ИК ИУС			Основная погрешность ИК ИУС		
			Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности	
37	Температура воды на охлаждение 6 балки	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$	Δ = ± 0,6 °C		
			Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm~0.5~\%$			
38	Температура воды на охлаждение 7 балки	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		$\Delta = \pm 0.6$ °C	
			Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			
39	Температура воды на охлаждение 8 балки	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		$\Delta = \pm 0.6$ °C	
			Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			
40	Температура воды на охлаждение 9 балки	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274	21968-11	$\gamma = \pm 0.25 \%$		Δ = ± 0,6 °C	
			Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			

Примечание — В таблице приняты следующие сокращения и обозначения: ФИФ ОЕИ — Федеральный информационный фонд по обеспечению единства измерений; Δ — абсолютная погрешность, δ — относительная погрешность, γ — приведенная погрешность, τ — измеренная температура, ρ_{max} — максимальный верхний предел измерений давления, ρ_{ℓ} — верхний предел измерений давления датчика

Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 450 среднесортного цеха АО «ЕВРАЗ ЗСМК». Методика поверки

приложение Б

(рекомендуемое)

ОБРАЗЕЦ ОФОРМЛЕНИЯ ПРОТОКОЛА ПОВЕРКИ

протокол поверки

Средство измерений (СИ)	№ от «»20 г					
Средство измерении (Си)	наименование, тип					
заводской номер (номера)						
принадлежащее						
	наименование юридического (физического) лица					
поверено в соответствии с	наименование и номер документа на методику поверки					
с применением эталонов:						
	наименование, заводской номер, разряд, класс или погрешность					
при следующих значениях влияют	щих факторов:					
 температура окружающего в 						
 атмосферное давление 	_ кПа%					
 относительная влажность 						
напряжение питания lчастота Гц.	B;					
Результаты операций поверки						
1 Рассмотрение документации						
2 Внешний осмотр						
3 Проверка электрического сопро-	тивления цепи защитного заземления					
4 Проверка условий эксплуатации	компонентов ИУС					
5 Опробование						
6 Подтверждение соответствия пр	оограммного обеспечения ИУС					
7 Определение погрешности изме	рений и синхронизации времени					
	ктеристик измерительных каналов ИУС					
	гических характеристик измерительных каналов ИУС габлицы в Приложении А настоящей методики поверки).					
Заключение СИ (не) соответствуе	т метрологическим требованиям					
Руководитель отдела (группы)						
	подпись инициалы, фамилия					
Поверитель						
подпись	инициалы, фамилия					

приложение в

(рекомендуемое)

ОБРАЗЕЦ ПРИЛОЖЕНИЯ К СВИДЕТЕЛЬСТВУ О ПОВЕРКЕ

Номер ИК ИУС	Наименование ИК ИУС	Диапазон измерений физической величины, ед. измерений	Средства измерений, входящие в состав ИК ИУС			Основная погрешность ИК ИУС	
			Наименование, тип СИ, заводской номер	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности

приложение г

(справочное)

ПЕРЕЧЕНЬ ССЫЛОЧНЫХ НОРМАТИВНЫХ ДОКУМЕНТОВ

ГОСТ 8.508-84 ГСИ. Метрологические характеристики средств измерений и точностные характеристики средств автоматизации ГСП. Общие методы оценки и контроля.

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.

ГОСТ 18404.0-78 Кабели управления. Общие технические условия.

ГОСТ 26411-85 Кабели контрольные. Общие технические условия.

ГОСТ Р МЭК 870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров.

ГОСТ Р 8.585 ГСИ. Термопары. Номинальные статические характеристики преобразования

РМГ 62-2003 ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации.

МИ 2439-97 ГСИ. Метрологические характеристики измерительных систем. Номенклатура. Принципы регламентации, определения и контроля.