УТВЕРЖДАЮ

Заместитель генерального директора по метрологии, руководитель службы

по обеспечению единства измерений

ФБУ «УРАЯТЕСТ»

Ю.М. Суханов

(16 » despose 2018 r.

Приборы диагностики свай Спектр МП 4202/1-2018

Методика поверки

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика распространяется на Приборы диагностики свай Спектр (далее приборы) и устанавливает методы и средства их первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При поверке выполняют операции, представленные в таблице 1.

Таблица 1 – Операции поверки

	Номер пункта	Проведение операции при	
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1 Внешний осмотр	8.1	да	да
2 Опробование	8.2	да	да
3 Проверка диапазона и определение		да	да
относительной погрешности	8.3		
измерения нтервалов времени,			
проверка диапазона показаний длины			

2.2 Если при проведении любой операции поверки получены отрицательные результаты, поверку прекращают, прибор признают непригодным к эксплуатации.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, предоставленные в таблице 2.

Таблица 2 – Средства измерений и вспомогательное оборудование

	Средства измерении и вспомогательное оборудование	
Номер пункта	Наименование рабочих эталонов или вспомогательных средств	
методики поверки	поверки	
8.3	 Генератор импульсов Г5-60 (рег. № 5463-76) временной сдвиг второго импульса пары относительно первого в режиме парных импульсов при внутреннем запуске от 0,1 до 9999990 мкс; пределы допускаемой абсолютной погрешности установки временного сдвига в рабочих условиях эксплуатации ± (1·10⁻⁶·D + 10 нс), где D – временной сдвиг второго импульса пары относительно первого Генератор сигналов произвольной формы DG1022 (рег. № 56011-13) диапазон частот синусоидального сигнала от 1 мкГц до 15 МГц; пределы допускаемой основной относительной погрешности установки частоты ± 1·10⁻⁴; пределы допускаемой абсолютной погрешности установки амплитуды синусоидального сигнала на частоте 1 кГц ± (0,01·U_{уст} + 1 мВ), при U_{уст} > 10 мВ; пределы допускаемой неравномерности амплитудной 	

Номер пункта	Наименование рабочих эталонов или вспомогательных средств	
методики поверки	поверки	
	характеристики в рабочем диапазоне частот ± 0,3 дБ	
1 4	3. Виброустановка поверочная DVC-500 (рег. № 58770-14)	
	- диапазон воспроизводимых рабочих частот по виброускорению	
	от 0,2 до 20000 Гц;	
	- пределы допускаемой основной относительной погрешности при	
	измерении виброускорения в диапазоне рабочих частот от 50 до	
	5000 Γ μ ± 1,5 %	

- 3.2 Допускается использование других средств измерений и вспомогательного оборудования, обеспечивающих определение метрологических характеристик с требуемой точностью.
- 3.3 Все средства поверки должны быть утвержденного типа, исправны и иметь действующие свидетельства о поверке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 К проведению поверки приборов допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации и настоящей методикой, и аттестованный в качестве поверителя.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки должны быть соблюдены все требования техники безопасности, предусмотренные документом «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» ПОТ Р М-016-2001, РД 153-34.0-03.150-00 (с изменениями и дополнениями), а также требования безопасности, указанные в технической документации на применяемые эталоны и вспомогательное оборудование.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки должны соблюдаться следующие условия:	
- температура окружающего воздуха, °С	20±5;
- относительная влажность воздуха, %, не более	80;
- атмосферное давление, кПа	100±4;
- параметры питания от сети переменного тока:	
 напряжения питания, В 	220±22;
- частота. Ги	

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Поверитель должен изучить руководства по эксплуатации на поверяемое средство измерений и используемые средства поверки.
 - 7.2 Перед проведением операций поверки необходимо:
 - проверить комплектность прибора;
- проверить комплектность средств поверки, заземлить и включить питание заблаговременно перед очередной операцией поверки (в соответствии со временем установления рабочего режима, указанным в РЭ).

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра проверить:

- сохранность пломб;
- чистоту и исправность разъемов и гнезд;
- наличие маркировки;
- отсутствие механических повреждений.

Приборы, имеющие дефекты и механические повреждения, препятствующие проведению операций поверки бракуются.

- 8.2 Опробование
- 8.2.1 Провести подготовку к работе прибора согласно п.6.1.4 РЭ.
- 8.2.2 Проверить отображение информации на дисплее планшетного компьютера (далее ПК) и реакцию на органы управления в соответствии с РЭ.
- 8.2.3 Проверить идентификационные данные программного обеспечения прибора. Включить беспроводной датчик-акселерометр однократным нажатием на кнопку включения. Найти на рабочем столе или в меню приложений планшетного ПК ярлык программы Спектр, запустить программу нажатием на ярлык, нажать кнопку «Старт» (в левом нижнем углу окна программы). Планшетный ПК установит с беспроводным цифровым датчиком виброускорения ДАЦ соединение по Bluetooth. На планшете выбрать вкладку «Прибор» и в ней пункт меню «О приборе». На дисплее появится краткая информация о предприятии-изготовителе, идентификационный номер версии программного обеспечения и контрольная сумма исполняемого кода, подтверждающая соответствие программного обеспечения. Идентификационные данные программного обеспечения на дисплее прибора должны совпадать с идентификационными данными, указанными в таблице 3.

Таблица 3 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	НКИП.408464.100 ПО
Номер версии ПО	10.04.2017
Цифровой идентификатор ПО (CRC32)	5C4D5217

- 8.2.4 Результаты проверки считают положительными, если при выполнении п.п. 8.2.1 8.2.3 не выявлено несоответствий.
- 8.3 Проверка диапазона и определение относительной погрешности измерения нтервалов времени, проверка диапазона показаний длины
- 8.3.1 Подключить выход генератора Г5-60 через нагрузку № 1 (из комплекта ЗИП генератора) ко входу «Ext Trig» генератора DG1022.
 - 8.3.2 Установить на блоке управления вибростендом:
 - усиление входного сигнала в положение 0 dB;
 - регулятор фазы входного сигнала в положение 180° .
- 8.3.3 Подключить выход генератора DG1022 ко входу «АС» блока управления вибростенда.
- 8.3.4 Установить датчик-акселерометр прибора на магнитную подложку вибростенда. Если в комплект поставки входит второй датчик, аналогично установить его с помощью вспомогательной площадки. Снятие показаний прибора и расчет погрешностей в этом случае проводить для сигналов обоих датчиков.

- 8.3.5 Установить на генераторе DG1022:
- режим «Burst» (пакет);
- NCycle: Cycles = 1 Cyc (количество циклов 1);
- Trigger: Source = External (внешний источник запуска);
- Sine (синусоидальный сигнал);
- Ampl = 700 mVpp (размах сигнала, мВ);
- Output (включение выхода генератора).
- 8.3.6 Установить на генераторе Γ 5-60:
- режим запуска ручной;
- переключатель количества импульсов парные импульсы;
- «ДЛИТЕЛЬНОСТЬ» 50 µs;
- «РЕЖИМ РАБОТЫ» полярность положительная, 1;
- «АМПЛИТУДА» 5 V:
- «БАЗ СМЕЩЕНИЕ» 0,1 V.
- 8.3.7 Подготовить прибор Спектр к измерениям, в соответствии с п.6.1.3 РЭ.
- 8.3.8 Перейти на вкладку «Режим» и убедиться что, выставлены настройки (либо выставить):
 - скорость 4000 м/с;
 - усреднение по трем ударам выкл.;
 - отображать удары выкл.;
 - ручной режим;
 - сигнал;
- один датчик (для прибора с одним датчиком), два датчика (для прибора с двумя датчиками);
 - 8.3.9 На вкладке «Обработка» установить настройки:
 - усиление выкл.;
 - интегратор вкл.;
 - ФНЧ вкл.;
 - ФВЧ вкл.
 - 8.3.10 На вкладке «Прибор» выбрать:
 - режим работы;
 - коэффициент усиления 24 дБ.
 - 8.3.11 Установить следующие параметры для измерения длины 1 м:
 - в генераторе DG1022 Freq = 3 kHz;
 - в генераторе Г5-60 «ВРЕМЕННОЙ СДВИГ D1» 500 μs;
 - в приборе на вкладке «Обработка» ожидаемая длина сваи 2 м.
 - 8.3.12 Установить подключение, нажав кнопку «Старт» в программе.
 - 8.3.13 Запустить сигнал с генератора Г5-60, нажав кнопку ручного запуска.
- 8.3.14 Дождаться появления временной диаграммы на экране ПК, на которой должны отобразиться два пика.
- 8.3.15 Коснуться экрана ПК в районе второго пика и считать измеренную длину и интервал времени.
- 8.3.16 Вычислить относительную погрешность измерения интервала времени по формуле

$$\delta_t = \left(\frac{t_{\rm H}}{t} - 1\right) \cdot 100\%,\tag{1}$$

где $t_{\rm u}$ – интервал времени, измеренный прибором.

8.3.17 Если измеренная по п. 8.3.15 длина больше 1 м, необходимо регулировкой величины временного сдвига генератора $\Gamma5$ -60 и повторением п. 8.3.12-8.3.15 добиться показаний длины меньше или равных 1 м.

- 8.3.18 Установить следующие параметры для измерения длины 10 м:
- в генераторе DG1022 Freq = 1 kHz;
- в генераторе Г5-60 «ВРЕМЕННОЙ СДВИГ D1» 5000 μs;
- в приборе на вкладке «Обработка» ожидаемая длина сваи 8 м.
- 8.3.19 Повторить п.п. 8.3.12-8.3.16.
- 8.3.20 Установить следующие параметры для измерения длины 40 м:
- в генераторе DG1022 Freq = 500 Hz;
- в генераторе Г5-60 «ВРЕМЕННОЙ СДВИГ D1» 20000 μs;
- в приборе на вкладке «Обработка» ожидаемая длина сваи 30 м.
- 8.3.21 Повторить п.п. 8.3.12-8.3.16.
- 8.3.22 Установить следующие параметры для измерения длины 80 м:
- в генераторе DG1022 Freq = 500 Hz;
- в генераторе Г5-60 «ВРЕМЕННОЙ СДВИГ D1» 40000 μs;
- в приборе на вкладке «Обработка» ожидаемая длина сваи 60 м.
- 8.3.23 Повторить п.п. 8.3.12-8.3.16.
- 8.3.24 Если измеренная по п. 8.3.15 длина менее 80 м, необходимо регулировкой величины временного сдвига генератора $\Gamma5$ -60 и повторением п. 8.3.12-8.3.15 добиться показаний длины больше или равных 80 м.
- 8.3.25 Результат проверки считается положительным, если относительная погрешность измерения интервалов времени находится в пределах \pm 5% в диапазоне от 500 до 5000 мкс и \pm 1% в диапазоне свыше 5000 до 40000 мкс, прибор индицирует показания длины от 1 до 80 м.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 При положительных результатах поверки выдается свидетельство о поверке в соответствии с Приказом Минпромторга РФ от 2 июля 2015 года № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 9.2 В случае отрицательных результатов поверки выдается извещение о непригодности в соответствии с Приказом Минпромторга РФ от 2 июля 2015 года № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Ведущий инженер по метрологии отдела 4202

М.В. Дедов