СОГЛАСОВАНО

УТВЕРЖДАЮ

Генеральный директор ООО «ЭнергоГид-Центр»

Генеральный директор ООО «ИЦРМ»

С.Л. Рудько

2016 г.

И вешения А. В. Щетинин

24 " 05

2016 г.

М.П.

«Испытательный центр разработок в области метрологии»

OTBETCT8

Счётчики активной и реактивной электрической энергии трехфазные многофункциональные ER307

Методика поверки

ДРЦМ.411152.027 МП

1 p. 64634-16

Содержание

1 Вводная часть	3
2 Операции поверки	3
3 Средства поверки	
4 Требования к квалификации поверителей	
5 Требования безопасности	
6 Условия поверки	4
7 Подготовка к поверке	5
8 Проведение поверки	5
9 Оформление результатов поверки	10
10 Приложение А	11

1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика поверки устанавливает методы и средства первичной и периодической поверок счётчиков активной и реактивной электрической энергии трехфазных многофункциональных ER307, далее по тексту – счётчики.
- 1.2 Счётчики подлежат поверке с периодичностью, устанавливаемой потребителем с учётом режимов и интенсивности эксплуатации, но не реже одного раза в 16 лет.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1Операции, выполняемые при поверке счётчиков, и порядок их выполнения приведены в таблице 1.

Таблица 1

Таблица 1		Необхо	димость
	Номер пунк-	выполнения	
Наименование операции поверки	та методики поверки	при пер- вичной поверке	при перио- дической поверке
Внешний осмотр	8.1	Да	Да
Проверка электрической прочности изоляции	8.2	Да	Нет
Проверка электрического сопротивления изоля-	8.3	Да	Да
Опробование	8.4	Да	Да
Подтверждение соответствия программного обеспечения	8.5	Да	Да
Проверка отсутствия самохода	8.6	Да	Да
Проверка стартового тока (чувствительности)	8.7	Да	Да
Проверка метрологических характеристик	8.8	Да	Да

- 2.2 При получении отрицательного результата в процессе выполнения любой из операций поверки счётчики бракуют, их поверку прекращают.
- 2.3 После устранения недостатков, вызвавших отрицательный результат, счётчики вновь представляют на поверку.

3 СРЕДСТВА ПОВЕРКИ

2.

3.1 Перечень средств измерений, используемых при поверке, приведен в таблице

Таблица 2

Наименование, обозначение	Тип	Требуемые характеристики		
Осн	овные средства поверки	I		
1. Установка поверочная универсальная	УППУ-МЭ 3.1К	Г. Р. № 39138-08		
2. Частотомер универсальный	GFC-8010H	Г.Р. № 19818-00		
Вспомог	гательные средства пове	ерки		
3. Установка для проверки пара- метров электрической безопасно- сти GPT-79803 Г. Р. № 50682-12				
4. Термогигрометр электронный	«CENTER» модель 313	Г.Р. № 22129-09		
5. Барометр-анероид метеорологический	БАММ-1	Γ.P. № 5738-76		
Примечание - Допускаето	я использование други	х средств измерений, обеспечи-		

Примечание - Допускается использование других средств измерений, обеспечивающих измерение соответствующих параметров с требуемой точностью.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускают лица, аттестованные в качестве поверителей средств измерений электрических величин.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.3.019-80, «Правилами техники безопасности, при эксплуатации электроустановок потребителей», «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок». Соблюдают также требования безопасности, изложенные в эксплуатационных документах на счётчики и применяемые средства измерений.
- 5.2 Средства поверки, которые подлежат заземлению, должны быть надежно заземлены. Подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение — после всех отсоединений.
- 5.3 Должны также быть обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

6 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 При проведении поверки должны быть соблюдены следующие условия:

- счётчик проверяют в корпусе с установленным кожухом и без крышки зажимов;
 - температура окружающего воздуха плюс (20 ± 3) °C;
 - относительная влажность окружающего воздуха от 30 до 80 %;
 - атмосферное давление от 80 до 106,7 кПа;
 - отсутствие постоянного магнитного поля внешнего происхождения.

Параметры, обеспечиваемые поверочной установкой:

- номинальная частота тока сети $(50,0\pm0,5)$ Γ ц;
- значение выходного напряжения переменного трехфазного тока от 40 B до 276 B;
 - значение выходного переменного трехфазного тока от 0,01 A до 100 A;
- отклонение значения силы тока в каждой из фаз от значений, указанных в каждом конкретном случае не более \pm 1 %;
- отклонение каждого из фазных (или линейных) напряжений от среднего значения не более ± 1 %;
- сдвиги фаз между токами и напряжениями (независимо от значения коэффициента мощности) не должны отличаться друг от друга более чем на 2°;
- коэффициент искажения формы кривых синусоидального напряжения и тока не более 2 %.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- провести технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75;
- выдержать счётчики в условиях окружающей среды, указанных в п.6, не менее 2 ч, если они находились в климатических условиях, отличающихся от указанных в п.6;
- подготовить к работе средства измерений, используемые при поверке, в соответствии с руководствами по их эксплуатации (все средства измерений должны быть исправны и поверены).

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При внешнем осмотре проверяют соответствие счётчиков следующим требованиям:

- лицевая панель счётчиков должна быть чистой и иметь четкую маркировку в соответствии с ГОСТ 31818.11-2012, ГОСТ 31819.21-2012, ГОСТ 31819.23-2012;
 - в комплекте счётчиков должны быть документы:
- 1) «Счётчик активной и реактивной электрической энергии трехфазный многофункциональный ER307. Паспорт» ДРЦМ.411152.027 ПС;
- 2) «Счётчики активной и реактивной электрической энергии трехфазные многофункциональные ER307. Руководство по эксплуатации» ДРЦМ.411152.027 РЭ;

3) «Счётчики активной и реактивной электрической энергии трехфазные многофункциональные ER307. Методика поверки» ДРЦМ.411152.027 МП;

Примечания

- 1 Паспорт поставляется в бумажной форме с каждым счётчиком.
- 2 Допускается поставка руководства по эксплуатации, методики поверки (файлы в формате pdf), установочного файла программы на одном компакт-диске в один адрес на 8 счётчиков или по отдельному заказу.
- на внутренней стороне крышки зажимов счётчиков должна быть прикреплена этикетка со схемой подключения счётчиков к электрической сети;
- все крепящие винты должны быть в наличии, резьба винтов должна быть исправна, механические элементы хорошо закреплены.
 - 8.2 Проверка электрической прочности изоляции

напряжением переменного изоляции электрической прочности Проверку тока проводить с установки для проверки параметров электрической безопасности GPT-79803 (далее по тексту-установка) в следующей последовательности:

- 1) Покрыть корпуса счётчиков сплошной, прилегающей к поверхности корпуса металлической фольгой («Земля») таким образом, чтобы расстояние от фольги до зажимов было не более 20 мм.
- соответствующее положение, зажимов силовых 2) Установить винты закреплению максимально допустимого сечения проводов.
- 3) Подать от установки на точки приложения испытательное напряжение практически синусоидальной формы частотой (45 – 65) Гц в соответствии с таблицей 3.

Таблица 3

Таблица 3	
Среднеквадратиче-	
ское значение испы-	Точка приложения испытательного напряжения
тательного напряже-	
ния, кВ	
	Между всеми цепями тока и напряжения, соединенными вместе, с
4	одной стороны, и «землей» – с другой стороны
	Между цепями, которые не предполагается соединять вместе во
2	время работы

- напряжения испытательного действием под оициклоги 4) Выдержать в течение 1 мин.
 - 5) Снизить испытательное напряжение до нуля и отключить установку.

Результаты проверки считаются положительными, если во время проверки не произошло пробоя или перекрытия изоляции испытуемых цепей.

8.3 Проверка электрического сопротивления изоляции

Проверку электрического сопротивления изоляции проводят следующим образом:

- 1)Подключить установку между цепями тока и напряжения, указанными в таблице 3.
 - 2) Установить на выходе установки напряжение постоянного тока 500 В.
 - 3) Провести измерение электрического сопротивления изоляции не менее 3 раз.

Результаты проверки считают удовлетворительными, если значение сопротивления изоляции составило не менее 20 МОм.

8.4 Опробование

Опробование счётчиков заключается в проверке функционирования дисплея и клавиатуры управления. Проверку проводить при номинальном значении напряжения на силовых зажимах счётчиков в следующей последовательности:

- 1) Собрать схему, представленную на рисунке А.1 Приложения А.
- 2) При помощи установки поверочной универсальной УППУ-МЭ 3.1К (далее по тексту УППУ) воспроизвести значение напряжения переменного тока равное $U_{\text{ном}}$.
- 3) Последовательно нажимая кнопки клавиатуры управления счётчика в ручном режиме индикации убедиться, что после каждого нажатия кнопки происходит изменение информации, отображаемой на дисплее в соответствии с описанием режима индикации в руководстве по эксплуатации.

Результаты проверки считаются положительными, если при включении отображаются все сегменты дисплея, и после каждого нажатия кнопки происходит соответствующее изменение отображаемой информации.

8.5 Подтверждение соответствия программного обеспечения

Проверка проводится в следующей последовательности:

- 1) Собрать схему, представленную на рисунке А.1 Приложения А.
- 2) При помощи УППУ воспроизвести значение напряжения переменного тока равное $U_{\text{ном}}$.
- 3) При помощи клавиш управления перемещаться в меню индикации до тех пор, пока на дисплее счётчика не отобразятся номер версии программного обеспечения (далее по тексту Π O).
- 4) Сравнить номер версии ПО, отображаемые на дисплее, с данными, представленными в описании типа и паспорте.
- 5) Результаты проверки считаются положительными, если отображаемые на дисплее счётчика номер версии ПО совпадают с данными, представленными в описании типа и паспорте.

8.6 Проверка стартового тока

Проверку стартового тока проводится при помощи УППУ

- при $U=U_{\mathsf{HOM}}$ и значениях тока в соответствии с таблицей 4
- для счётчиков класса точности 1 непосредственного включения
- $U=U_{ ext{ t Hom}};\ I=0,004{\cdot}I_6;\ cos\ arphi=1$ для счётчиков активной энергии;
- $U=U_{ ext{\tiny HOM}};\ I=0,004\cdot I_{6};\ sin\ arphi=1$ для счётчиков реактивной энергии;
 - для счётчиков класса точности 1, включаемых через трансформаторы
- $U = U_{\text{ном}}; I = 0,002 \cdot I_{\text{ном}}; \cos \varphi = 1$ для счётчиков активной энергии;
- $U=U_{ ext{ t Hom}};\ I=0,002\cdot I_{ ext{ t Hom}};\ sin\ \phi=1$ для счётчиков реактивной энергии;
 - для счётчиков класса точности 0,5S и 0,5
- $U=U_{\text{HOM}};\;I=0.001\cdot I_{\text{HOM}};\;cos\; \varphi=1.$

Проверку проводить в следующей последовательности:

1) подключить счётчик к УППУ согласно рисунку А Приложения А.

Таблица 4 – Стартовый ток

Класс точности Коэффициент мощност		Класс точности		иент мощности
Включение счётчика	0,5S, 0,5	1,0	cos φ	sin φ (при инд. или емк. нагрузке)
непосредственное	_	0,004 · I6		1
через трансформаторы	$0,001 \cdot I_{HOM}$	0,002 · Іном	1	

- 2) Перед началом проверки настраивают индикацию: для вывода на жидко кристаллическом индикаторе (далее по тексту ЖКИ) выбирают значение общего счётчика энергии (активной или реактивной, потреблённой или генерируемой в зависимости от требуемой проверки).
- 3) Проверку проводят, наблюдая за приращением показаний энергии на ЖКИ счётчика.
- 4) Для счётчиков активной и реактивной энергии проверку проводят для каждого вида энергии.
- 5) Для счётчиков с двумя направлениями учёта проверку проводят в обоих направлениях.
- 6) Счётчики должны начинать непрерывную регистрацию показаний активной и реактивной (для счётчиков соответствующих исполнений) энергии при симметричной нагрузке, коэффициенте мощности, равном 1, и значении тока:
 - $I = 0.004 \cdot I_6$ для счётчиков класса точности 1 непосредственного включения;
 - $I = 0.002I_{Hom}$ для счётчиков класса точности 1 трансформаторного включения;
 - $I = 0,001 \cdot I_{\text{ном}} -$ для счётчиков класса точности 0,5S и 0,5.

Результаты проверки считаются положительными, если при значениях тока по п. 6) счётчик начинает и продолжает регистрировать показания (активной и реактивной энергии, потребленной и генерируемой – в зависимости от исполнения).

8.7 Проверка отсутствия самохода

Проверку отсутствия самохода проводить при помощи УППУ в следующей последовательности:

- 1) подключить счётчик к УППУ согласно рисунку А.1 Приложения А;
- 2) подключить счётчик к компьютеру через интерфейс, например, оптический, с помощью устройства фотосчитывающего УФС-И (входящего в состав УППУ) для вывода на ЖКИ задать активную потреблённую энергию и ток линейного канала
- 3) установить на выходе УППУ следующий испытательный сигнал: напряжение $-1,15\cdot \mathrm{U}_{\mathit{HoM}};$ сила тока -0 A;
- 4) После приложения напряжения, равного $1,15 \cdot U_{\text{ном}}$, при отсутствии тока в цепи тока испытательные выходные устройства счётчиков активной и реактивной (для счётчиков соответствующих исполнений) энергии не должны создавать каждое более одного импульса. Минимальный период испытания Δt , мин, должен составлять:

$$\Delta t \ge \frac{R \cdot 10^6}{k \cdot m \cdot U_{\text{maxing}} \cdot I_{\text{maxing}}} \tag{1}$$

где: k — постоянная счётчика, имп./(кВт·ч) или имп./(квар·ч));

т – число измерительных элементов;

 U_{HOM} – номинальное напряжение, В;

 $I_{\text{макс}}$ – максимальный ток, A;

R=600 для счётчиков активной энергии класса точности 1, 0,5S и реактивной энергии класса 0,5;

R = 480 для счётчиков реактивной энергии классов точности 1.

- 5) В течение времени, вычисленного формуле (1), проводят наблюдение за оптическими выходными устройствами активной и реактивной (для счётчиков соответствующих исполнений) энергии.
- 6) Счётчик считают выдержавшим испытания, если за время наблюдения оптические выходные устройства активной и реактивной энергии выдадут не более одного импульса.
 - 8.8 Проверка метрологических характеристик
- 8.8.1 Проверка основной относительной погрешности измерения активной и реактивной электрической энергии счётчиков.

Проверку основной относительной погрешности при измерении активной (реактивной) энергии проводить при помощи УППУ при значениях информативных параметров входного сигнала, указанных в таблицах 5-12 в следующей последовательности:

- 1) Подключить счётчики к УППУ в соответствии с рисунком А.1 Приложения А.
- 2) Подключить к УППУ импульсные выходы счётчиков.
- 3) Подать на счётчики напряжение $U_{\text{ном}}$.
- 4) Поместить устройство фотосчитывающее УФС-И (входящее в состав УППУ) на оптический порт счётчика.
- 5) Запустить ПО. Создать канал связи «Прямое соединение» в соответствии с руководством по эксплуатации.
- 6) Последовательно провести испытания для прямого и обратного направлений активной энергии следующим образом:
 - установить на выходе УППУ сигналы в соответствии с таблицей 5-8;
- считать с дисплея УППУ значения погрешностей измерения энергии прямого и обратного направлений δ_W , %;
- 7) Последовательно провести испытания (таблицы 9-12) для прямого и обратного направлений реактивной энергии, выполнив действия в п. 6)

Результаты проверки считаются положительными, если полученные значения погрешностей измерения активной и реактивной энергии не превышают значений, приведенных в таблицах 5-12.

Таблица 5 — Проверка погрешности измерения активной энергии для трехфазных

счётчиков класса точности 1 при симметричной многофазной нагрузке

Значение тока для счётчиков				Продолу и порромилости
Номер испытания	С непосредственным включением	Включаемых через трансформатор	Коэффициент мощности соѕ ф	Пределы погрешности при измерении активной энергии, %
1	$0.05 \cdot I_{6}$	0,02. Іном		±1,5
2	$0,1\cdot I_{\delta}$	0,05-Іном	1 [±1,0
3	I_6	I_{HOM}		±1,0

	Значение тока для счётчиков			Harring Hormony Modern
Номер ис- пытания	С непосредственным включением	Включаемых через трансформатор	Коэффициент мощности соз Ф	Пределы погрешности при измерении активной энергии, %
4	Імакс	Імакс		±1,0
5	$0,1\cdot I_{6}$	0,05-Іном		±1,5
6	$0,2 \cdot I_6$	$0,1 \cdot I_{HOM}$		±1,0
7	I_6	I_{HOM}	0,5 L и 0,8 С	±1,0
8	Імакс	$I_{\it Makc}$		±1,0

Таблица 6 — Проверка погрешности измерения активной энергии для трехфазных счётчиков класса точности 1 при однофазной нагрузке и симметрии многофазных напряже-

ний, приложенных к цепям напряжения

	Информативные параметры входного сигнала тока, А			Пределы погрешности при измерении
Номер испытания	с непосредствен- ным включением	Включаемых через транс- форматор	мых активной энергии, $\%$ активной энергии, $\%$	
1	$0,1\cdot I_{\mathcal{O}}$	0,05 · Іном.		± 2,0
2	$0,2\cdot I_{\mathcal{G}}$	0,1. Іном.	1,0	± 2,0
3	I_6	$I_{HOM.}$		± 2,0
4	$I_{\it Makc}$	І _{макс.}		± 2,0
5	0,2·I6	0,1 · Іном.		± 2,0
6	I_6	Іном.	0,5 L	± 2,0
7	Імакс	Імакс		± 2,0

Примечания

1 Испытания должны быть проведены последовательно для каждой фазы счётчиков.

2 Знаком «L» обозначена индуктивная нагрузка.

Таблица 7 – Проверка погрешности измерения активной энергии для трехфазных

счётчиков класса точности 0,5S при симметричной нагрузке

Номер ис- пытания	Значение тока для счётчиков	Коэффициент мощности соs ф	Пределы погрешности при измерении активной энергии, %
1	0,01-Іном		±1,0
2	0,05-Іном		±0,5
3	I_{HOM}	1	±0,5
4	Імакс	7	±0,5
5	0,02. Іном		±1,0
6	0,1:Іном	0,5 L и 0,8 С	±0,6

Номер ис- пытания	Значение тока для счёт- чиков	Коэффициент мощности соз ф	Пределы погрешности при измерении активной энергии, %
7	I_{HOM}		±0,6
8	І _{макс}		±0,6

Таблица 8 – Проверка погрешности измерения активной энергии для трехфазных счётчиков класса точности 0,5S при однофазной нагрузке и симметрии многофазных напря-

жений, припоженных к цепям напряжения

Номер ис-	Иложенных к цепям напряжения Информативные параметры входного сигнала		Пределы погрешности при измерении активной энергии, %
пытания	Ток, А	Cos φ	
1	0,05 · Іном.		±0,6
2	0,1 · Іном.		±0,6
3	Іном.	1,0	±0,6
4	Імакс.		±0,6
5	0,1.Іном.		±1,0
6	Іном.	0,5 L	±1,0
7	Імакс		±1,0

Примечания

Таблица 9 – Проверка погрешности измерения реактивной энергии при симметричной нагрузке для исполнений счётчиков класса точности 0,5 при симметричной многофазной

нагрузке

Номер испытания	Значение тока для счёт- чиков	Коэффициент sin ф (при индуктивной и емкостной нагрузке)	Пределы погрешности при измерении активной энергии, %
1	$0,01 \cdot I_{HOM}$		±1,0
2	0,05-Іном	1	± 0,5
3	I _{HOM}		± 0,5
4	Імакс		± 0,5
5	0,02·I _{HOM}		±1,0
6	0,1. Іном		± 0,6
7	I _{HOM}	0,5	± 0,6
8	Імакс		± 0,6
9	0,1 · Іном		±1,0
		0,25	±1,0
10	I _{HOM}		±1,0
11	1 макс		

¹ Испытания должны быть проведены последовательно для каждой фазы счётчиков.

² Знаком «L» обозначена индуктивная нагрузка.

Таблица 10 – Проверка погрешности измерения реактивной энергии при симметричной нагрузке для исполнений счётчиков класса точности 0,5 при однофазной нагрузке и симмет-

рии многофазных напряжений, приложенных к цепям напряжения

Номер ис- пытания	Информативные параметры входного сиг- нала		Пределы погрешности при измерении	
	Ток, А	$sin \ \phi$ (при индуктивной или емкостной нагрузке)	реактивной энергии, %	
1	0,05-І _{ном.}		± 0,6	
2	0,1. Іном.		± 0,6	
3	Іном.	1,0	± 0,6	
4	Імакс.		± 0,6	
5	0,1 · Іном.		± 1,0	
6	Іном.	0,5	± 1,0	
7	І _{макс}		± 1,0	

Примечания

Таблица 11 – Проверка погрешности измерения реактивной энергии для трехфазных

счётчиков класса точности 1 при симметричной нагрузке

	Значение тока для счётчиков			
Номер ис- пытания	С непосредственным включением	Включаемых через транс- форматор	Коэффициент sin φ (при индуктивной и емкостной нагрузке)	Пределы погрешности при измерении активной энергии, %
1	0,05· <i>I</i> 6	0,02-Іном		±1,5
2	0,1.16	0,05-Іном	1	±1,0
3	I_6	Іном	1	±1,0
4	I _{макс}	I _{макс}		±1,0
5	$0,1\cdot I_6$	$0,05 \cdot I_{HOM}$		±1,5
5	$0,2 \cdot I_6$	$0,1 \cdot I_{HOM}$		±1,0
6	I_6	Іном	0,5	±1,0
7	Імакс	Імакс		±1,0
8	$0,2 \cdot I_6$	0,1.Іном		±1,5
9	I_{δ}	Іном	0,25	±1,5
10	I _{макс}	Імакс		±1,5

Таблица 12 — Проверка погрешности измерения реактивной энергии для трехфазных счётчиков класса точности 1 при однофазной нагрузке и симметрии многофазных напряжений, приложенных к цепям напряжения

¹ Испытания должны быть проведены последовательно для каждой фазы счётчиков.

² Знаком «L» обозначена индуктивная нагрузка.

Номер ис- пытания	Информативные параметры входного сигна- ла тока, А			Пределы погрешности при изме-	
	С непосредственным включением	Включаемых через транс- форматор	Sin φ	рении реактивной энергии, %	
1	0,1· <i>I</i> ₆	$0,05 \cdot I_{HOM}$		± 1,5	
2	0,2· <i>I</i> ₆	$0,1\cdot I_{HOM.}$	1,0	± 1,5	
3	I_6	І _{ном.}	1,0	± 1,5	
4	Імакс	Імакс.		± 1,5	
5	0,2·I6	0,1. Іном.		± 1,5	
6	I_6	Іном.	0,5 L	± 1,5	
7	Імакс	$I_{{\scriptscriptstyle M}{a}{\kappa}{c}}$		± 1,5	

Примечания

- 1 Испытания должны быть проведены последовательно для каждой фазы счётчиков.
- 2 Знаком «L» обозначена индуктивная нагрузка.

8.8.2 Проверка абсолютной погрешности суточного хода часов

Проверку суточного хода встроенных часов проводят методом измерения периода повторения секундных импульсов встроенных часов в следующем порядке:

- а) собирают схему в соответствии с рисунком А.1;
- б) подают на счётчик номинальное напряжение;
- в) командой по интерфейсу переводят электрическое импульсное устройство (телеметрический выход) в режим выдачи импульсов, пропорциональных счёту времени, с интервалом 1 с;
- г) измеряют частотомером универсальным GFC-8010H (далее по тексту частотомер) период следования импульсов;
- д) по окончании измерений вычитывают из счётчика величину коррекции суточного хода часов ΔT ;
 - е) определяют суточный ход часов по формулам (2) и (3).

$$\Delta T_{u_{3M}} = 1 - T_{u_{3M}} \tag{2}$$

$$\Delta T_{cym} = \Delta T_{u_{3M}} \times 86400 + \Delta T_{\kappa} \tag{3}$$

где: $T_{uзм}$ – измеренный период секундных импульсов, с;

 $\Delta T_{u_{3M}}$ — величина погрешности периода секундных импульсов;

 ΔT_{cym} – суточный ход часов, с;

 ΔT_{κ} – величина коррекции суточного хода часов, с;

86400 - количество секунд в одних сутках.

Результаты проверки считаются положительными, если полученное значение абсолютной погрешности суточного хода часов в нормальных условиях с учётом коррекции не превышает $\pm 1,0$ с в сутки.

8.8.3 Проверка допускаемой относительной погрешности измерения фазного напряжения переменного тока

Проверку проводят при помощи УППУ в следующей последовательности:

- 1) Собрать схему, приведенную на рисунке А.1 Приложения А.
- 2) При помощи УППУ воспроизвести испытательные сигналы согласно таблице 13.

Таблица 13

1 403111	Значение тока для счётчиков			Пределы допус-
Значение напряжения	с непосредственным включением	включаемых через трансформатор	Коэффициент мощности соѕф	каемой относи- тельной погреш- ности, %
$0,\!80 \cdot U_{\scriptscriptstyle{HOM}}$				
$U_{\scriptscriptstyle{HOM}}$	I_6	I_{HOM}	1,0	± 1,0
$1,15 \cdot U_{ ext{ t HOM}}$				

- 3) Сравнить показания, измеренные УППУ и счётчиком.
- 4) Рассчитать относительную погрешность измерения напряжения переменного тока по формуле (4).

$$\delta X = \frac{X_{\scriptscriptstyle H} - X_{\scriptscriptstyle o}}{X_{\scriptscriptstyle o}} \cdot 100; \tag{4}$$

где X_{μ} – показание счётчика;

 X_0 – показание УППУ;

Результаты проверки считаются положительными, если полученное значение относительной погрешности не превышает пределов, приведенных в таблице 13.

8.8.4 Проверка допускаемой относительной погрешности измерения силы переменного тока.

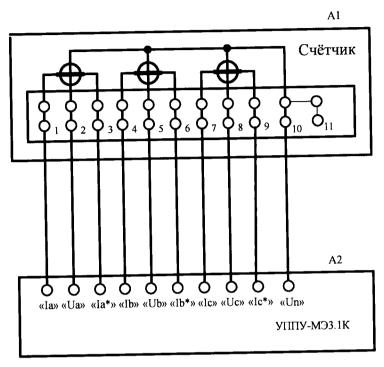
Проверку проводят при помощи УППУ в следующей последовательности:

- 1) Собрать схему, приведенную на рисунке А.1 Приложения А.
- 2) При помощи УППУ воспроизвести испытательные сигналы согласно таблице 14.

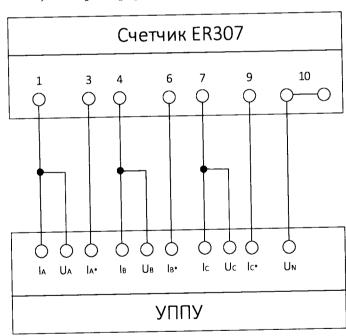
Таблица 14

Значение тока для счётчиков с непосредственным включаемых через трансформатор		Значение напряжения	Коэффициент мощности соѕф	Пределы допус- каемой относи- тельной погреш- ности, %
0,05·I6	$0,01 \cdot I_{HOM}$			
I_6	$I_{\scriptscriptstyle{HOM}}$	U_{HOM}	1,0	± 1,0
I _{макс}	$I_{\sf Make}$			

- 3) Сравнить показания, измеренные УППУ и счётчиком.
- 4) Рассчитать относительную погрешность измерения силы переменного тока по формуле (4).


Результаты проверки считаются положительными, если полученное значение относительной погрешности не превышает пределов, приведенных в таблице 14.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ


- 9.1 Счётчик, прошедший поверку с положительными результатами, признают годным и наносят на место пломбирования счётчика оттиск клейма поверителя.
- 9.2 Положительные результаты поверки оформляются записью в соответствующем разделе паспорта, заверенной подписью и оттиском клейма поверителя.
- 9.3 Результаты поверки вносят в протокол, оформленный в соответствии с ГОСТ 8.584-2004.
- 9.4 Счётчик, прошедший поверку с отрицательными результатами, бракуют. Клеймо предыдущей поверки гасят, а счётчик отправляют в ремонт. В паспорт вносят запись о непригодности с указанием причин.

Приложение А

Схемы подключения счётчиков

а) для трансформаторного типа включения

б) для непосредственного типа включения

А1 – счётчики;

A2-установка поверочная универсальная «УППУ-МЭ 3.1К».

Рисунок А.1 – Схемы подключения измерительных цепей