Федеральное государственное унитарное предприятие «Всероссийский научно - исследовательский институт расходометрии» (ФГУП «ВНИИР»)

УТВЕРЖДАЮ

Иериый заместитель директора по научной работе – заместитель директора по качеству ФГУП «ВНИИР»

В А. Фафурин

9 января 2016 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Система автоматизированная налива нефтепродуктов в автоцистерны нефтебазы Челнинского филиала ООО «Татнефть-АЗС Центр»

Методика поверки

MΠ 0389-14-2016

rp.64019-16

РАЗРАБОТАНА

ФГУП «ВНИИР»

ИСПОЛНИТЕЛИ

Груздев Р.Н., Ягудин И.Р.

УТВЕРЖДЕНА

ФГУП «ВНИИР»

Содержание

1	Операции поверки	4
	Средства поверки	
	Требования к квалификации поверителей и требования безопасности	
	Условия поверки	
	Подготовка к поверке	
	Проведение поверки	
7	Оформление результатов поверки	10
Прі	иложение А (обязательное). Форма протокола результата поверки	12
Пр	иложение Б (обязательное). Форма протокола результатов поверки счетчиков – ходомеров массовых	13

Настоящая инструкция распространяется на систему автоматизированную налива нефтепродуктов в автоцистерны нефтебазы Челнинского филиала ООО «Татнефть-АЗС Центр» (далее — система), предназначенную для автоматизированного управления технологическим процессом и измерений массы отпускаемых нефтепродуктов, наливаемых в автоцистерны при проведении учетных операций между сдающей стороной (ООО «Татнефть-АЗС Центр») и покупателями. Система подлежит первичной и периодической поверке.

Поверку системы осуществляют только аккредитованные в установленном порядке в области обеспечения единства измерений государственные региональные центры метрологии (ГРЦМ) или государственные научные метрологические институты (ГНМИ) Росстандарта.

Интервал между поверками системы – 12 месяцев.

1 Операции поверки

1.1 При проведении первичной и периодической поверки выполняют операции, приведенные в таблице 1.

	Номер пункта	Проведение операции при		
Наименование операции	документа по поверке	первичной поверке	периодической поверке	
Проверка комплектности технической документации	6.1	Да	Нет	
Проверка идентификационных данных программного обеспечения (ПО)	6.2	Да	Да	
Внешний осмотр	6.3	Да	Да	
Опробование	6.4	Да	Да	
Определение метрологических характеристик	6.5	Да	Да	

Таблица1 – Операции поверки

1.2 Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

2 Средства поверки

- 2.1 При проведении поверки могут применяться следующие средства поверки:
- установка поверочная средств измерений объема и массы УПМ 2000 (далее УПМ) на базе мерника вместимостью 2000 дм 3 с диапазоном взвешивания от 0 до 2000 кг и пределами допускаемой относительной погрешности \pm 0,04 % при измерении массы, \pm 0,05 % при измерении объема;

- ареометр АНТ-1 с ценой деления $0.5~{\rm kr/m}^3$ и приделами допускаемой абсолютной погрешности $\pm~0.5~{\rm kr/m}^3$.

Допускается применять в качестве средств поверки другие аналогичные по назначению средства измерений (СИ) утвержденных типов, если их метрологические характеристики не уступают указанным в данной методике поверки.

3 Требования к квалификации поверителей и требования безопасности

- 3.1 К поверке системы допускаются лица, аттестованные в качестве поверителей.
- 3.2 Лица, привлекаемые к выполнению измерений, должны:
- быть ознакомлены с эксплуатационной документацией на поверяемую систему;
- соблюдать правила техники безопасности и пожарной безопасности, установленные для объекта, на котором проводят поверку.
- 3.3 Требования безопасности при монтаже и поверке системы должны соответствовать Федеральному закону № 123-ФЗ от 22.07.2008 г. «Технический регламент о требованиях пожарной безопасности», Федеральному закону № 69-ФЗ от 21 декабря 1994 г. «О пожарной безопасности» и Правилам противопожарного режима в Российской Федерации (утв. постановлением Правительства РФ от 25 апреля 2012 г. № 390), СНиП 21.01-97 «Пожарная безопасность зданий и сооружений», НПБ 88-2001 «Установки пожаротушения и сигнализации. Нормы и правила проектирования».
- 3.4 Подключение системы по электропитанию проводят согласно эксплуатационной документации на систему.
- 3.5 Все изделия, входящие в состав системы, должны быть герметичны при давлении, создаваемом насосом системы.
- 3.6 Должны соблюдаться требования, определяемые «Правилами безопасности в нефтяной и газовой промышленности» (приказ Ростехнадзора от 12.03.2013 № 101), руководством по безопасности «Рекомендации по устройству и безопасной эксплуатации технологических трубопроводов» (приказ Федеральной службы по экологическому, технологическому и атомному надзору от 27 декабря 2012 г. № 784)).

4 Условия поверки

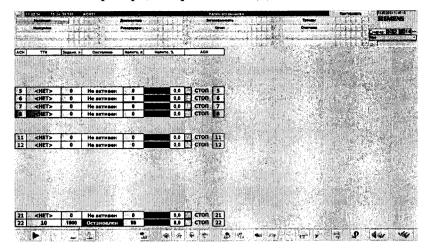
- 4.1 При проведении поверки соблюдают условия в соответствии с требованиями нормативных документов на методики поверки СИ, входящих в состав системы.
 - 4.2 Поверку проводят в условиях эксплуатации системы.
- 4.3 Характеристики измеряемой среды при проведении поверки должны соответствовать требованиям, приведенным в таблице 2.

Таблица2 – Характеристики системы и измеряемой среды

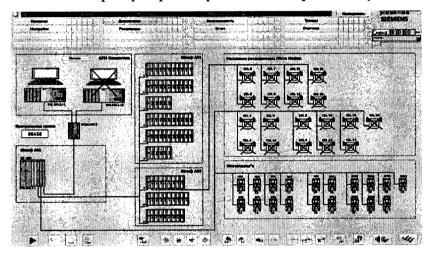
Наименование характеристики	Значение характеристики			
Измеряемая среда	Нефтепродукты			
Диапазон расхода через каждый стояк, т/ч	От 12 до 63			
Диапазон кинематической вязкости, мм ² /с (сСт)	От 0,55 до 100			
Диапазон плотности, кг/м ³	От 650 до 980			
Диапазон избыточного давления, МПа	От 0 до 0,6			
Диапазон температуры измеряемой среды, °С	От минус 40 до плюс 50			
Массовая доля воды, %	Следы			
Массовая доля механических примесей с размером				
твердых частиц не более 0,2 мм, %, не более	0,2			
Содержание свободного газа	Не допускается			
Пределы допускаемой относительной погрешности				
измерений массы нефтепродуктов, %	± 0,25			
Режим работы	Периодический, автоматизированный			

5 Подготовка к поверке

- 5.1 Перед проведением поверки выполняют следующие подготовительные работы:
- проверяют соблюдение требований, изложенных в разделе 3 настоящей методики поверки;
- средства поверки подготавливают к работе в соответствии с эксплуатационными документами на них;
 - подключают систему к источнику питания;
 - заполняют гидравлическую систему и УПМ измеряемой средой.


6 Проведение поверки

6.1 Проверка комплектности технической документации


Проверяют наличие действующих свидетельств о поверке манометров и эксплуатационно-технической документации на СИ, входящие в состав системы.

- 6.2 Проверка идентификационных данных ПО
- 6.2.1 При проверке идентификационных данных ПО должно быть установлено соответствие идентификационных данных ПО системы сведениям, приведенным в описании типа на систему.
- 6.2.2 Определение идентификационных данных ПО контроллера программируемого SIMATIC S7-400 (далее ИВК) проводят в следующей последовательности:
 - включить питание ИВК;
 - включить питание автоматизированного рабочего места (АРМ) оператора;

- на дисплее APM оператора, выбрать поле «Диагностика»;

- на дисплее APM оператора просматривается контрольная сумма ПО.

В случае, если идентификационные данные ПО системы не соответствуют данным указанным в описании типа на систему, поверку прекращают. Выясняют и устраняют причины вызвавшие не соответствие. После чего повторно проверяют идентификационные данные ПО системы.

6.3 Внешний осмотр

- 6.3.1 При внешнем осмотре должно быть установлено соответствие системы следующим требованиям:
 - комплектность системы должна соответствовать технической документации;
- на компонентах системы не должно быть механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- надписи и обозначения на компонентах системы должны быть четкими и соответствовать технической документации;
- наличие технических и программных компонентов для используемого счетчикарасходомера массового СМF 300 с измерительным преобразователем 2700 (далее – СРМ);

- наличие пломб на СРМ и ИВК;
- перед проведением записи в эксплуатационной документации считывают значение коэффициентов коррекции, которые записывают в формуляр;
 - производят установку нуля СРМ (согласно руководству по эксплуатации СРМ).

6.4 Опробование

- 6.4.1 Опробование системы проводят на измеряемой среде. После подсоединения гидравлической и электрической систем проводят заполнение гидросистемы измеряемой средой, прокачивая её насосом, входящим в состав системы. Для этого задают с персонального компьютера различные дозы и проводят пробные наливы в УПМ.
- 6.4.2 Проверяют действие и взаимодействие компонентов системы в соответствии с эксплуатационной документации системы, возможность получения отчета.
 - 6.4.3 Проверяют герметичность системы.
- 6.4.3.1 Герметичность системы проверяют путём подачи в ее гидравлическую систему измеряемой среды, визуальным осмотром стыковочных соединений, резьбовых и фланцевых соединений, сальниковых уплотнений, сварных швов после ее десятиминутной работы.
- 6.4.3.2 Герметичность проверяют под давлением не более 0,2 МПа (2 кгс/см²), создаваемым насосом в течение трех минут при закрытом клапане отсекателе.
- 6.4.4 Система считается выдержавшей проверку, если при её осмотре не обнаружено следов течи измеряемой среды и запотевания при работающем насосе.
 - 6.5 Определение метрологических характеристик.
- 6.5.1 Относительную погрешность системы δ_m , %, при измерениях массы измеряемой среды определяют в каждой точке диапазона расхода СРМ. При этом в каждой точке расхода проводят не менее трех измерений. Для этого:
 - 6.5.1.1 Наконечник наливного устройства заправляют в горловину УПМ;
- 6.5.1.2 На персональном компьютере выполняют все операции по заданию дозы измеряемой среды;
 - 6.5.1.3 Включают подачу измеряемой среды;
- 6.5.1.4 Налив дозы измеряемой среды в УПМ прекращается автоматически, после чего наконечник наливного устройства обязательно извлекают из горловины УПМ;
- 6.5.1.5 После заполнения УПМ определяют значение массы, отпущенной измеряемой среды по показаниям ИВК или персонального компьютера;
 - 6.5.1.6 Снятие показания с УПМ проводят через 30 с, после заполнения УПМ;

- 6.5.1.7 После этого сливают из УПМ измеряемую среду обратно в топливный резервуар или автоцистерну.
- 6.5.1.8 Значение поверочного расхода Q_{ij} , кг/ч, при і-ом измерении в ј-й точке рабочего диапазона измерений массового расхода вычисляется по формуле:

$$Q_{ij} = \frac{M_{ij}^{\circ} \cdot K_s \cdot 60}{\tau_{ii}},\tag{1}$$

где

 M_{ij}° - масса измеряемой среды, измеренная УПМ, при і-ом измерении в ј-й точке рабочего диапазона измерений массового расхода, кг;

 au_{ii} - время наполнения УПМ, мин;

 K_s — коэффициент, учитывающий поправку при взвешивании на воздухе, вычисляют по формуле:

$$K_{s} = \frac{1 - \frac{\rho_{s}}{\rho_{M}}}{1 - \frac{\rho_{s}}{\rho_{M}}}, \tag{2}$$

где

 ho_{∞} – плотность измеряемой среды, кг/м³;

 $ho_{\rm M}$ — плотность материала гирь для поверки весов, кг/м³ ($ho_{\rm M}$ = 8000 кг/м³);

 $\rho_{\rm e}$ – плотность воздуха, кг/м³ ($\rho_{\rm M}$ = 1,23 кг/м³).

Коэффициент коррекции СРМ MF_{ij} при і-ом измерении в ј-й точке рабочего диапазона измерений массового расхода вычисляют по формуле:

$$MF_{ij} = \frac{M_{ij}^{\circ} \cdot K_{e}}{M_{ij}} \cdot MF^{ycm} , \qquad (3)$$

где

 M_{ij} - масса измеряемой среды, измеренная СРМ при і-ом измерении в ј-й точке рабочего диапазона измерений массового расхода, кг;

 MF^{ycm} - коэффициент коррекции СРМ установленный ранее (по результатам предыдущей поверки).

Примечание: При первичной поверке (перед вводом СРМ в эксплуатацию) значение MF^{ycm} принимают равным 1.

Среднее значение коэффициента коррекции СРМ MF_j , кг/ч, в j-й точке рабочего диапазона измерений массового расхода вычисляют по формуле:

$$MF_{j} = \frac{\sum_{i=1}^{n} MF_{ij}}{n} , \qquad (4)$$

где

 $_{
m n}$ - где количество измерений в точке рабочего диапазона измерений массового расхода.

Среднее значение поверочного расхода СРМ Q_{j} , кг/ч, в j-й точке рабочего диапазона измерений массового расхода вычисляют по формуле:

$$Q_{j} = \frac{\sum_{i=1}^{n} Q_{ij}}{n} , \qquad (5)$$

Среднее значение коэффициента коррекции СРМ MF_j в рабочем диапазоне измерений массового расхода вычисляют по формуле:

$$MF = \frac{\sum_{j=1}^{m} MF_j}{m},\tag{6}$$

где

т - где количество точек рабочего диапазона измерений СРМ.

6.5.1.9 Относительную погрешность системы $\delta_{\it m}$, %, при измерении массы измеряемой среды, вычисляют по формуле:

$$\delta_m = \frac{\left(M_{ij} - M_{ij}^3 \cdot K_s\right)}{M_{ij}^3 \cdot K_s} \cdot 100, \tag{7}$$

При каждом измерении должно быть выполнено условие:

$$\delta_m \le 0.25\% \tag{8}$$

В случае несоблюдения условия (8), вводят откорректированный коэффициент коррекции MF в CPM и проводят контрольные измерения.

6.5.1.10 Результаты поверки системы положительные, если относительная погрешность δ_m не превышает \pm 0,25 %.

7 Оформление результатов поверки

7.1 При положительных результатах поверки оформляют свидетельство о поверке системы по форме приложения 1 документа «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке»,

утвержденного приказом Минпромторга России от 2 июля 2015 г. № 1815, и протокол поверки в соответствии с приложением А.

На оборотной стороне свидетельства о поверке системы указывают диапазон измерений массового расхода, пределы допускаемой относительной погрешности измерений массы нефтепродукта и номер(а) поста налива с заводским(и) номером(а) СРМ допущенного(ых) к применению в составе системы.

7.1.1 На каждый СРМ, входящий в состав системы, имеющий положительный результат поверки, устанавливают пломбы, несущие на себе знак поверки. Оформляют свидетельство о поверке СРМ в соответствии с документом «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным приказом Минпромторга России от 2 июля 2015 г. № 1815, и протокол поверки в соответствии с приложением Б.

На оборотной стороне свидетельства о поверке CPM указывают диапазон измерений массового расхода, пределы допускаемой относительной погрешности измерений массы нефтепродукта и коэффициент коррекции.

- 7.2 При отрицательных результатах поверки систему к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают извещение о непригодности по форме приложения 2 «Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» утвержденного приказом Минпромторга России от 2 июля 2015 г. № 1815.
- 7.2.1 При отрицательных результатах поверки СРМ к применению не допускают, выдают извещение о непригодности СРМ с указанием причин непригодности в соответствии с приказом Минпромторга России от 2 июля 2015 г. № 1815, и производят соответствующую запись в формуляре СРМ. Систему допускают к применению с СРМ имеющими положительные результаты поверки.

Приложение А

(обязательное)

Форма протокола результата поверки

ПРОТОКОЛ ПОВЕРКИ №

i	Наименование	измерительной системы)	
- 1	i ianmenobanne	HOMEDITE IBROT CHETCHEL	

- 1 Наименование поверяемой измерительной системы:
- 2 Заводской номер:
- 3 Год выпуска:
- 4 Принадлежит:
- 5 Методика поверки:
- 6 Характеристики измеряемой среды:
- 7 Наименование эталонов и испытательного оборудования:
- 8 Результаты поверки определения относительной погрешности при измерении расхода и массы нефтепродуктов приведены в таблице

№ п/п	№ поста налива	Заводской № счетчика — расходомера массового	№ свидетельства о поверке	Максимальная относительная погрешность счетчика – расходомера массового, %	Дата поверки
1					
2					
•••					

9 Заключение:

Приложение Б (обязательное)

Форма протокола результатов поверки счетчиков – расходомеров массовых

ПРОТОКОЛ ПОВЕРКИ №

Дата	Пост налива

(Nº поста налива, зав. Nº счетчика расходомера массового, тип измеряемого нефтепродукта)

Таблица № 1 Протокол результата поверки счетчика – расходомера массового без учета коэффициента коррекции

MF			
Относительная погрешность, бм. %			
Температ ура по УПМ, кг, М"			
Показания массы УПМ, кг, М _м			
Cp. B3. remueparypa, no ACH, °C, t*.			
Ср. вз. плотность по АСН, кг/м³, $\rho_{\mathbf{x}}$			
Время Показания налива, массы на мин., Т АСН, кг, М _А			
Время налива, мин., Т			
Отпущен Вр ный нал объем, м', ми			
аданный бъем, м ³ , V			
Расход 3 0 3ад. Пол. м ³ ч г/ч			
№ На ли ва	_	2	:

Таблица № 2 Протокол результата поверки счетчика – расходомера массового с учетом коэффициентом коррекции

_		1				ı
	MF					
	Относительная погрешность, бм, %					
	Temnepar ypa no yIIM, kr, M _m					
•	Показания массы УПМ, кг, М _м					
	Cp. B3. Temneparypa, no ACH, °C, t _x .				после введения откорректированного МF	
	Cp. вз. плотность по ACH, κг/м³, ρ*				ния откоррект	
	Показания массы на АСН, кг, М _А		-		после введе	
	Время налива, мин., Т					
	Отпущен Время ный налива, объем, м, мин., Т					,
	Заданный объем, м ³ , V					
	Расход 3 3ад. Пол. м ³ /ч т/ч					-
	№ На ли ва	-	2	::		2.2

 K_{e} – коэффициент, учитывающий поправку при взвешивании = 1,001;

и (или) приведенная к условиям измерений ρ . ho_{20} – плотность нефтепродукта, измеренная в лаборатории при 20 °C = _

Заключение:

Поверитель

инициалы, фамилия

подпись