УТВЕРЖДАЮ

Государственная система обеспечения единства измерений

Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1пр сортопрокатного цеха АО «ЕВРАЗ ЗСМК»

МЕТОДИКА ПОВЕРКИ

МП 250-16

Содержание

1 Общие положения	3
2 Операции поверки	4
3 Средства поверки	5
4 Требования к квалификации поверителей	5
5 Требования безопасности	5
6 Условия поверки	6
7 Подготовка к поверке	6
8 Проведение поверки	6
9 Оформление результатов поверки	13
Приложение А Метрологические характеристики измерительных каналов ИУС	14
Приложение Б Образец оформления протокола поверки	19
Приложение В Форма приложения к свидетельству о поверке	20
Приложение Г Перечень ссылочных нормативных документов	21

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на систему измерительноуправляющую технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1пр сортопрокатного цеха АО «ЕВРАЗ ЗСМК» (далее – ИУС) и устанавливает методы и средства её первичной и периодической поверок.
- 1.2 Поверке подлежит ИУС в соответствии с перечнем измерительных каналов (ИК), приведенным в приложении А настоящей методики поверки. На основании письменного заявления собственника ИУС допускается проведение поверки отдельных измерительных каналов из перечня, приведённого в описании типа ИУС, с обязательным указанием в приложении к свидетельству о поверке информации о количестве и составе поверенных ИК.
 - 1.3 Первичную поверку ИУС выполняют перед вводом в эксплуатацию и после ремонта.
- 1.4 Периодическую поверку ИУС выполняют в процессе эксплуатации через установленный интервал между поверками. Периодичность поверки (интервал между поверками) ИУС 1 год.
- 1.5 Измерительные компоненты ИУС поверяют с интервалом между поверками, установленным при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки ИУС, поверяется только этот компонент и поверка ИУС не проводится.
- 1.6 При замене измерительных компонентов на однотипные, прошедшие испытания в целях утверждения типа, с аналогичными техническими и метрологическими характеристиками поверке подвергают только те ИК, в которых проведена замена измерительных компонентов. В этом случае собственником ИУС должен быть оформлен акт об изменениях, внесенных в ИУС, являющийся неотъемлемой частью паспорта, в которых указаны компоненты ИК.
- 1.7 При модернизации ИУС путем введения новых измерительных каналов должны быть проведены их испытания в целях утверждения типа.
- 1.8 В случае замены отдельных компонентов автоматизированных рабочих мест (APM) оператора, за исключением замены жёсткого диска компьютера, проводят проверку функционирования ИУС в объёме 8.5 настоящей методики поверки.
- 1.9 В случае обновления программного обеспечения (ПО) ИУС, модификации его функций проводится анализ изменений, внесённых в программное обеспечение. Если внесённые изменения могут повлиять на метрологически значимую часть программного обеспечения, то проводят испытания ИУС в целях утверждения типа.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1

		Пр	оведение опера	щии при поверке	
Наименование операции	Номер	and bear of sec.			
	пункта методики поверки	при вводе в эксплуатацию	после ремонта ИК или замены компонента	после переустановки ПО или замены APM оператора	периоди- ческой
1 Рассмотрение документации	8.1	да	да*	да	да [*]
2 Внешний осмотр	8.2	да	нет	да	да
3 Проверка сопротивления цепи защитного заземления	8.3	да	да	нет	да
4 Проверка условий эксплуатации компонентов ИУС	8.4	да	да*	нет	да
5 Опробование	8.5	да	да*	да	да
6 Подтверждение соответствия программного обеспечения ИУС	8.6	да	нет	да	да
7 Определение погрешности измерений и синхронизации времени	8.7	да	нет	да*	да
8 Проверка метрологических характеристик измерительных каналов ИУС	8.8	да	да*	да	да

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки применяют основные и вспомогательные средства поверки, перечень которых приведен в таблице 2.
- 3.2 Средства поверки должны быть внесены в Государственный реестр средств измерений утверждённых типов и иметь действующие свидетельства о поверке и(или) знаки поверки.

Таблица 2 - Средства поверки

Наименование и	Основные метрологические харак	стеристики
тип средства поверки	диапазон измерений (воспроизведений)	погрешность, класе точности
Термогигрометр ИВА-6А-Д	 Диапазон измерений температуры от минус 20 до 60 °C; диапазон измерений влажности от 0 до 98 %; диапазон измерений атмосферного давления от 86 до 106 кПа 	$ \Delta = \pm 0.3 \text{ °C}; $ $ \delta = \pm 0.1 \%; $ $ \Delta = \pm 2.5 \text{ κΠa} $
Измеритель сопротивления заземления ИС-10	Диапазон измерений сопротивления от 1 до 999 мОм	$\Pi\Gamma \pm (3 \% + 3 \text{ e.m.p.})$
Калибратор электрических сигналов СА71	— Диапазон воспроизведения сигналов силы постоянного тока от 0 до 24 мА; — диапазон воспроизведения напряжения постоянного тока от 0 до 110 мВ	$\Delta = \pm (0.025 \% \cdot X + 3 \text{ MKA});$ $\Delta = \pm (0.02 \% \cdot X + 15 \text{ MKB})$
Радиочасы МИР РЧ-02	Пределы допускаемой абсолютной погрешности с («привязки») фронта выходного сигнала 1 Гц по ш времени UTC (Universal Time Coordinated) ± 1 мкс	кале координированного

Примечания

- 1) В таблице приняты следующие обозначения: Δ абсолютная погрешность, единица величины; δ относительная погрешность, %; X значение воспроизводимой величины, деленное на 100 %.
- 2) При проведении поверки допускается замена указанных средств поверки аналогичными, обеспечивающими проверку метрологических характеристик ИК ИУС с требуемой точностью

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 Поверка ИУС должна выполняться специалистами, имеющими удостоверение на право работы с напряжением до 1000 В (квалификационная группа по электробезопасности не ниже третьей) и освоившими работу с измерительными каналами ИУС.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:
- ГОСТ IEC 60950-1-2014 Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования;
 - Правила устройств электроустановок, раздел I, III, IV;
 - Правила технической эксплуатации электроустановок потребителей;
 - Правила по охране труда при эксплуатации электроустановок;
 - СНиП 3.05.07-85 Системы автоматизации;
 - эксплуатационная документация на средства измерений и компоненты ИУС.

6 УСЛОВИЯ ПОВЕРКИ

6.1 Средствам измерений, используемым при проведении поверки, должны быть обеспечены следующие условия:

-	температура окружающего воздуха, °С	от 15 до 25;
-	относительная влажность окружающего воздуха, при 25 °C, %	от 30 до 80;
-	атмосферное давление, кПа	от 84 до 106,7;
-	напряжение питающей сети переменного тока, В	от 198 до 242;
-	частота питающей сети, Гц	от 49 до 51.

6.2 Условия эксплуатации:

а) для измерительных и связующих компонентов ИУС:

 температура окружающего воздуха для преобразователей 	
давления измерительных, °С	от 0 до 40;
 температура окружающего воздуха для преобразователей 	
температуры, °С	от 0 до 60;
 относительная влажность воздуха при 25 °C, % 	от 40 до 90;
 атмосферное давление, кПа 	от 84 до 106,7;
б) для комплексных и вычислительных компонентов ИУС:	
 температура окружающего воздуха, °С 	от 15 до 30;
 относительная влажность воздуха при 25 °C, % 	от 40 до 80;
 атмосферное давление, кПа 	от 84 до 106,7.
 температура окружающего воздуха, °C относительная влажность воздуха при 25 °C, % 	от 40 до 80;

7 ПОДГОТОВКА К ПОВЕРКЕ

7.1 На поверку ИУС представляют следующие документы:

 Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1пр сортопрокатного цеха АО «ЕВРАЗ ЗСМК». Паспорт;

- РИЦ205.00-ИЭ.01 ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат», Сортопрокатный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательной печи № 2 стана 250-1пр (АСУТП нагрева в печах СПЦ). Инструкция по эксплуатации для технологического персонала СПЦ;
- РИЦ205.00-ИЭ.02 ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Сортопрокатный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательной печи № 2 стана 250-1пр (АСУТП нагрева в печах СПЦ). Инструкция по эксплуатации для обслуживающего персонала СПЦ;
- МП 250-16 ГСИ. Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1пр сортопрокатного цеха АО «ЕВРАЗ ЗСМК». Методика поверки;
 - свидетельство о предыдущей поверке ИУС (при выполнении периодической поверки);
- документы, удостоверяющие поверку средств измерений, входящих в состав измерительных каналов ИУС;
 - эксплуатационную документацию на ИУС и её компоненты;
 - эксплуатационную документацию на средства измерений, применяемые при поверке.
- 7.2 Перед выполнением операций поверки необходимо изучить настоящий документ, эксплуатационную документацию на поверяемую ИУС. Непосредственно перед выполнением поверки необходимо подготовить средства поверки к работе в соответствии с их эксплуатационной документацией.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Рассмотрение документации

- 8.1.1 Проверяют наличие следующей документации:
- Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1пр сортопрокатного цеха АО «ЕВРАЗ ЗСМК». Паспорт (паспорт);
- РИЦ205.00-ИЭ.01 ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Сортопрокатный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательной печи № 2 стана 250-1пр (АСУТП нагрева в печах СПЦ). Инструкция по эксплуатации для технологического персонала СПЦ (инструкция по эксплуатации);
- РИЦ205.00-ИЭ.02 ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Сортопрокатный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательной печи № 2 стана 250-1пр (АСУТП нагрева в печах СПЦ). Инструкция по эксплуатации для обслуживающего персонала СПЦ;
- документы, удостоверяющие поверку средств измерений, входящих в состав измерительных каналов ИУС;
 - свидетельство о предыдущей поверке ИУС (при выполнении периодической поверки);
 - эксплуатационную документацию на ИУС и её компоненты.
- 8.1.2 Проверяют соответствие перечня измерительных каналов, приведенного в паспорте, перечню приложения А настоящей методики поверки.
- 8.1.3 Эксплуатационная документация на средства измерений, применяемые при поверке ИУС, должна содержать информацию о порядке работы, их технических и метрологических характеристиках.

Результаты проверки положительные, если вся вышеперечисленная документация в наличии, перечень измерительных каналов, приведенный в паспорте, соответствует перечню приложения А настоящей методики поверки, все средства поверки имеют документально подтвержденную пригодность для использования в операциях поверки, все средства измерений ИК ИУС имеют действующие свидетельства о поверке (сертификаты о калибровке).

8.2 Внешний осмотр

- 8.2.1 При внешнем осмотре проверяют соответствие ИУС нижеследующим требованиям:
- соответствие комплектности ИК ИУС перечню, приведенному в паспорте и в таблице А.1 приложения А настоящей методики поверки;
- отсутствие механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- отсутствие обрывов и нарушения изоляции кабелей и жгутов, влияющих на функционирование ИУС;
 - наличие и прочность крепления разъёмов и органов управления;
 - отсутствие следов коррозии, отсоединившихся или слабо закрепленных элементов схемы.
- 8.2.2 Внешним осмотром проверяют соответствие количества и месторасположения APM оператора, контроллера программируемого SIMATIC S7-300 (ПЛК) данным, приведённым в паспорте и инструкции по эксплуатации.

Результаты проверки положительные, если выполняются вышеперечисленные требования. При оперативном устранении недостатков, замеченных при внешнем осмотре, поверка продолжается по следующим операциям.

- 8.3 Проверка сопротивления цепи защитного заземления
- 8.3.1 Проверку сопротивления цепи защитного заземления проводят только для тех компонентов ИК ИУС, которые в соответствии с эксплуатационной документацией должны быть подключены к защитному заземлению.

- 8.3.2 Значение сопротивления между заземляющим болтом (винтом, шпилькой) и каждой доступной прикосновению металлической нетоковедущей частью компонента ИК ИУС, которая может оказаться под напряжением, не должно превышать 0,1 Ом.
- 8.3.3 Сопротивление цепи защитного заземления измеряют измерителем сопротивления заземления или определяют по протоколам испытаний компонентов ИК ИУС.

Результаты проверки положительные, если значение сопротивления цепи защитного заземления, измеренное или зафиксированное в протоколах, не превышает 0,1 Ом.

- 8.4 Проверка условий эксплуатации компонентов ИУС
- 8.4.1 Проверку проводят сравнением фактических климатических условий в помещениях, где размещены компоненты ИУС, с данными, приведенными в 6.2 настоящей методики поверки и эксплуатационной документации на эти компоненты.

Результаты проверки положительные, если фактические условия эксплуатации каждого компонента ИУС удовлетворяют рабочим условиям применения, приведенным в разделе 6 настоящей методики поверки и эксплуатационной документации.

8.5 Опробование

- 8.5.1 Перед выполнением экспериментальных исследований необходимо подготовить ИУС и средства измерений к работе в соответствии с указаниями эксплуатационной документации.
- 8.5.2 Перед опробованием ИУС в целом необходимо выполнить проверку функционирования отдельных компонентов измерительных каналов ИУС.
- 8.5.3 При проверке функционирования измерительных и комплексных компонентов ИУС проверяют работоспособность индикаторов, отсутствие кодов ошибок или предупреждений об авариях.
 - 8.5.4 При опробовании связующих компонентов ИУС проверяют:
 - наличие сигнализации о включении в сеть технических средств ИУС;
- поступление по линиям связи информации об измеряемых параметрах технологического процесса и состоянии технических средств ИУС;
 - наличие сигнализации об обрыве линий связи.
 - 8.5.5 При опробовании вычислительных компонентов ИУС:
- проверяют правильность функционирования APM оператора: мониторы должны быть включены, исправность клавиатуры и манипулятора мышь оценивают, выполнив переключение между экранными формами ПО, установленного на компьютерах APM оператора;
- проверяют отображение главной мнемосхемы и возможность вызова через неё остальных экранных форм программного обеспечения (рисунок 1);
- выполняют первичное тестирование программного обеспечения ИУС APM оператора: опрос первичных измерительных преобразователей, модулей ввода аналоговых сигналов ПЛК, установление связи с оборудованием ИУС и т.д.

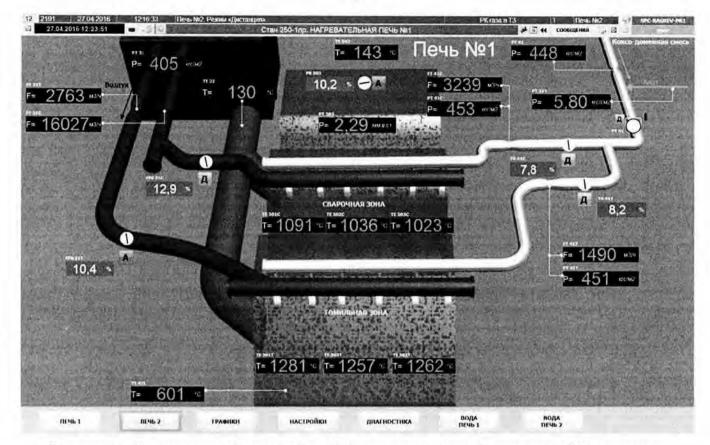


Рисунок 1 – Вид экранной формы «Печь № 1» программного обеспечения АРМ оператора

8.5.6 Опробование измерительных каналов ИУС в целом проводят средствами программного обеспечения АРМ оператора выполнением ряда тестов или операций, обеспечивающих проверку работы ПО ИУС в каждом из предусмотренных режимов. При каждом выполнении теста или операции проводят сравнение полученных результатов с описанием, приведённым в инструкции по эксплуатации.

С АРМ оператора проверяют выполнение следующих функций:

- отображение значений параметров технологического процесса, текущей даты и времени;
- отображение архивных данных за семь суток;
- ведение журнала сообщений;
- отображение и настройка сигналов предупредительной и аварийной сигнализации при выходе параметров за установленные пределы;
 - диагностика оборудования ИУС.

Результаты проверки положительные, если в журнале отсутствуют сообщения об авариях, по всем измерительным каналам ИУС на экранных формах программного обеспечения АРМ оператора отображаются значения параметров технологического процесса в установленных единицах и диапазонах измерений.

- 8.6 Подтверждение соответствия программного обеспечения ИУС
- 8.6.1 Проверка идентификационных данных ПО ИУС
- 8.6.1.1 Проверку идентификационных данных программного обеспечения проводят в процессе штатного функционирования ИУС. Прикладное ПО ИУС включает программное обеспечение, функционирующее на АРМ оператора, и программное обеспечение ПЛК, являющееся метрологически значимой частью ПО ИУС.
- 8.6.1.2 К идентификационным данным метрологически значимой части программного обеспечения ИУС относится идентификационное наименование проекта ПО ПЛК: «TipPech1».

8.6.1.3 Проверку идентификационного наименования ПО ПЛК проводят с помощью APM оператора под правами доступа пользователя «администратор», получив доступ к системе программирования встроенного ПО ПЛК — STEP 7.

Результаты проверки положительные, если идентификационное наименование проекта метрологически значимой части ПО ИУС соответствует данным, приведённым в 8.6.1 настоящей методики поверки и описании типа средства измерений.

- 8.6.2 Проверка защиты ПО ИУС и данных от преднамеренных и непреднамеренных изменений
- 8.6,2.1 Проверку защиты ПО ИУС от несанкционированного доступа на аппаратном уровне проводят проверкой ограничения доступа к запоминающим устройствам ИУС и наличия средств механической защиты замков на дверях шкафов, в которых установлены модули ПЛК и системные блоки АРМ оператора.

Результаты проверки положительные, если защита программного обеспечения и данных обеспечивается конструкцией ИУС, на дверях шкафов имеются замки.

- 8.6.2.2 Проверку защиты ПО ИУС и данных от преднамеренных и непреднамеренных изменений на программном уровне проводят на APM оператора проверкой наличия и правильности:
- реализации алгоритма авторизации пользователя ПО APM оператора (отсутствие доступа к ПО ИУС и данным при вводе неверного пароля);
- функционирования средств обнаружения и фиксации событий, подлежащих регистрации.
 в журнале сообщений ПО АРМ оператора;
- реализации разграничения полномочий пользователей ПО APM оператора, имеющих различные права доступа к программному обеспечению ИУС и данным.

Результаты проверки положительные, если осуществляется авторизованный доступ к выполнению функций ПО APM оператора, в журнале сообщений фиксируются события и аварии.

- 8.7 Определение погрешности измерений и синхронизации времени
- 8.7.1 Проверку системы обеспечения единого времени ИУС проводят с использованием радиочасов МИР РЧ-02, хранящих шкалу времени, синхронизированную с метками шкалы координированного времени государственного первичного эталона Российской Федерации UTC (SU). В соответствии с эксплуатационной документацией подключают радиочасы МИР РЧ-02 к компьютеру, выполняют настройку с использованием программы «Конфигуратор радиочасов МИР РЧ-02» (конфигуратор).
- 8.7.2 Определение погрешности измерений и синхронизации времени проводят проверкой расхождения между шкалами времени внутренних часов компьютеров APM оператора и радиочасов следующим образом:
 - ПО APM оператора переводят в режим отображения текущего времени;
- одновременно фиксируют показания «ВРЕМЯ UTС» во вкладке «Синхронизация» конфигуратора и текущее время, отображаемое на APM оператора;
- определяют разницу (без учёта количества часов) между шкалами времени часов компьютера APM оператора и временем UTC (SU).

Результаты проверки положительные, если синхронизация времени осуществляется успешно, расхождение между шкалами времени внутренних часов компьютеров APM оператора и радиочасов, привязанных к шкале координированного времени UTC (SU), не превышает 5 с.

- 8.8 Проверка метрологических характеристик измерительных каналов ИУС
- 8.8.1 Метрологические характеристики (МХ) ИК ИУС определяют расчётноэкспериментальным способом (согласно МИ 2439). Проверку метрологических характеристик измерительных и комплексных компонентов ИК ИУС (первичных измерительных

преобразователей, модулей ввода аналоговых сигналов ПЛК) выполняют экспериментально в соответствии с утверждёнными методиками поверки на каждый тип средства измерений. Метрологические характеристики ИК рассчитывают по МХ компонентов ИУС в соответствии с методикой, приведённой в 8.8.4 настоящей методики поверки. Допускается не проводить расчет фактической погрешности ИК ИУС при условии, что подтверждены метрологические характеристики компонентов ИК ИУС. Результаты проверки МХ ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.

- 8.8.2 Проверка метрологических характеристик компонентов ИК ИУС
- 8.8.2.1 Метрологические характеристики измерительных и комплексных компонентов ИУС принимают равными значениям, приведённым в эксплуатационной документации (паспорт, формуляр и др.) на средства измерений при наличии на них свидетельств и (или) знаков поверки.
- 8.8.2.2 Значения основной погрешности средства измерений ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.
 - 8.8.3 Исходные допущения для определения погрешности измерительных каналов ИУС

Погрешности компонентов ИУС относятся к инструментальным погрешностям.

Факторы, определяющие погрешность, - независимы.

Погрешности компонентов ИУС – не коррелированы между собой.

Законы распределения погрешностей компонентов ИУС – равномерные.

- 8.8.4 Методика расчёта основной погрешности ИК ИУС
- 8.8.4.1 Погрешности ИК температуры нормированы в абсолютной форме. Погрешности ИК объёмного расхода нормированы в относительной форме. Погрешности ИК давления и давления-разряжения, в состав которых входят датчики давления, нормированы в приведённой форме.
- 8.8.4.2 Границы основной абсолютной погрешности ИК температуры $\Delta_{\text{ИК_осн}}$, ${}^{\circ}\text{C}$, определяют, исходя из состава ИК ИУС, по формуле (1):

$$\Delta_{\text{ИК_ocii}} = \Delta_{\text{ПИП}} + \Delta_{\text{ПЛК}} + \Delta_{\text{ЛС}}, \tag{1}$$

где $\Delta_{\Pi \Pi \Pi}$ – основная абсолютная погрешность преобразователей температуры, °C;

 $\Delta_{\Pi J K}$ — основная абсолютная погрешность модуля ввода аналоговых сигналов ПЛК, °С;

 $\Delta_{\rm JIC}$ – абсолютная погрешность линии связи, °C.

Примечание — Погрешность линии связи определяется потерями в линиях связи. Между измерительными и комплексными компонентами линии связи построены из кабелей контрольных и (или) кабелей управления. Параметры линий связи удовлетворяют требованиям ГОСТ 18404.0 и ГОСТ 26411. Длина линий связи небольшая, входное сопротивление модулей ПЛК велико, поэтому потери в линиях связи пренебрежимо малы. Между комплексными и вычислительными компонентами построен цифровой канал связи. Применены сетевые технологии Ethernet, Profibus DP. Передача данных по каналам связи Ethernet, Profibus DP имеет класс достоверности 11 и относится к S1 классу организации передачи (в соответствии с ГОСТ Р МЭК 870-5-1). Принимаем погрешность линии связи во всех ИК ИУС равной нулю.

Для расчёта погрешности измерительного канала по формуле (1) погрешность компонента ИК ИУС переводят в абсолютную форму Δ , единица величины, для случая её представления в приведённой форме γ , %, по формуле:

$$\Delta = \gamma \cdot \frac{X_{\rm B} - X_{\rm H}}{100} \,, \tag{2}$$

где X_B и X_H – верхний и нижний пределы измерений компонента ИК ИУС, единица величины. Для модулей ввода аналоговых сигналов ПЛК, погрешность которых нормирована в приведённой форме, необходимо определить значение силы тока, соответствующей

номинальному значению. Расчёт значения силы тока І_{номі}, мА, соответствующей номинальному значению измеряемой величины Х_{номі}, единица величины, проводят по формуле:

$$I_{\text{HOME}} = \frac{D_{\text{CHIFHRADB}} \cdot X_{\text{HOME}}}{D_{\text{HMID}}} + 4. \tag{3}$$

где $D_{\text{сигнала}}$ — разница между верхним и нижним пределами диапазона измерений входного сигнала модуля ПЛК, мА;

 $D_{\Pi \Pi \Pi}$ — разница между верхним и нижним пределами диапазона измерений преобразователей (в тех же единицах, что и $X_{\text{ном}i}$);

Примечание – Числовые значения пределов диапазонов измерений преобразователей приведены в эксплуатационной документации (паспорт) на средства измерений. Значение напряжения постоянного тока на выходе преобразователей термоэлектрических – в соответствии с ГОСТ Р 8.585.

8.8.4.3 Границы основной относительной погрешности ИК объемного расхода $\delta_{\text{ИК_оси}}$, %, определяют, исходя из состава ИК ИУС (в соответствии с РМГ 62), по формуле:

$$\delta_{HK \text{ occ}} = K \cdot \sqrt{\delta_{\Pi H \Pi}^2 + \delta_{\Pi J K}^2 + \delta_{A B}^2 + \delta_{A C}^2}, \tag{4}$$

где K = 1,2:

 $\delta_{\Pi U\Pi}$ — основная относительная погрешность первичных измерительных преобразователей, %;

δ_{ПЛК} – основная относительная погрешность модуля ввода аналоговых сигналов ПЛК, %:

 $\delta_{\rm алг}$ — относительная погрешность алгоритма (при наличии), %:

 $\delta_{\rm JC}$ – относительная погрешность линии связи, %.

Для расчёта погрешности ИК ИУС по формуле (4) погрешность компонента ИК ИУС переводят в относительную форму δ , %, для случая её представления в абсолютной или приведённой формах по формуле:

$$\delta = \frac{\Delta}{X_{\text{HOM}}} \cdot 100 = \gamma \cdot \frac{X_{\text{B}} - X_{\text{H}}}{X_{\text{HOM}}}, \tag{5}$$

где Δ — пределы допускаемой абсолютной погрешности компонента ИК ИУС, единица величины:

 у – пределы допускаемой приведённой погрешности компонента ИК ИУС, нормированной для диапазона измерений;

 $X_{\rm B}$ и $X_{\rm H}$ — верхний и нижний пределы диапазона измерений компонента ИК ИУС (в тех же единицах, что и $X_{\rm HOM}$);

Примечание — Если приведённая погрешность γ нормирована для верхнего предела диапазона измерений, то $X_{\rm H}$ =0.

 $X_{\text{пом}}$ — номинальное значение измеряемой величины, для которой рассчитывают границы относительной погрешности измерений, единица величины.

В соответствии с ГОСТ 8.508 относительную погрешность измерений вычисляют в точках $X_{\text{номі}}$, соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений, и выбирают максимальное значение (i = 1, ..., 5).

- 8.8.4.4 Границы основной приведённой погрешности ИК давления и давления-разряжения, в состав которых входят датчики давления, $\gamma_{\text{ИК оси}}$, %, определяют следующим образом:
- а) переводят погрешность компонентов ИК ИУС из приведённой формы в относительную по формуле (6) согласно ГОСТ 8.508 в точках $X_{\rm номі}$, соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений;
- б) вычисляют по формуле (5) основную относительную погрешность ИК ИУС для каждой i-ой точки диапазона измерений $\delta_{\rm HK~ocm}$, %;

в) переводят значения основной погрешности ИК ИУС, соответствующие *i*-ым точкам диапазона, из относительной формы в приведённую по формуле:

$$\gamma_{\text{HK ocm}} = \frac{\delta_{\text{HK ocm}} \cdot X_{\text{HK mosn}}}{X_{\text{B}} - X_{\text{H}}}, \tag{6}$$

где $X_{\rm B}$ и $X_{\rm H}$ – верхний и нижний пределы измерений ИК ИУС (в тех же единицах, что и $X_{\rm HK_HOMi}$);

 $X_{\rm ИК_{100M}}$ — номинальное значение ИК ИУС, соответствующее i-ой точке диапазона измерений;

г) выбирают из пяти значений, полученных по формуле (6), максимальное и приписывают его основной приведённой погрешности ИК ИУС.

Рассчитанные (фактические) значения погрешности ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.

Результаты проверки положительные, если фактические значения погрешностей измерительных каналов не превышают границ допускаемых погрешностей, приведённых в таблице А.1 приложения А настоящей методики поверки.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки оформляют протоколом по форме, приведенной в приложении Б настоящей методики поверки.
- 9.2 При положительных результатах поверки ИУС оформляют свидетельство о поверке. Состав и метрологические характеристики измерительных каналов ИУС приводят в Приложении к свидетельству о поверке по форме, приведенной в приложении В настоящей методики поверки. Каждая страница Приложения к свидетельству о поверке должна быть заверена подписью поверителя. Знак поверки наносят на свидетельство о поверке.
- 9.3 При положительных результатах первичной поверки (после ремонта или замены компонентов ИК ИУС на однотипные поверенные), проведённой в объёме проверки в части вносимых изменений, оформляют новое свидетельство о поверке ИУС при сохранении без изменений даты очередной поверки.
- 9.4 Допускается на основании письменного заявления собственника ИУС проведение поверки отдельных измерительных каналов из перечня, приведённого в описании типа ИУС, с обязательным указанием в Приложении к свидетельству о поверке информации о количестве и составе поверенных каналов.
- 9.5 Отрицательные результаты поверки оформляют извещением о непригодности. Измерительные каналы ИУС, прошедшие поверку с отрицательным результатом, не допускаются к использованию.

Приложение А

(обязательное)

Метрологические характеристики измерительных каналов ИУС

Таблица А.1

		Диапазон	Средства измерений (СИ), входящ	ие в состав	ИК ИУС	Основна	я погрешность ИК ИУС
№ ИK	Наименование ИК ИУС	измерений физической величины, единица измерений	Наименование и тип средства измерений	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности СИ	факти- ческая	границы допускаемой погрешности
1	2	3	4	5	6	7	8
	Температура газовоздушной смеси от 0 до		Преобразователь термоэлектрический ТПП-0192		$\Delta = \pm 2.4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm 0.004 \cdot t$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 3.4$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 2.9$ °C
,	в сварочной зоне (передний конец)	1300 °C	Модуль ввода аналоговых сигналов 6ES7 331-7PF11-0AB0 контроллера программируемого SIMATIC S7 серии S7-300 (далее – Модуль 6ES7 331-7PF11-0AB0)	15772-11	$\Delta = \pm 1.0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0.5$ °C в диапазоне св. 100 до 1300 °C		в диапазоне св. 100 до 600 °C; $\Delta = \pm (0.5 + 0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C

1	2	3	4	5	6	7	8
2	Температура газовоздушной смеси	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm 0.004 \cdot t$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 3.4$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 2.9$ °C
2	в сварочной зоне (задний конец)	1300 °C	Модуль 6ES7 331-7PF11-0AB0	15772-11	$\Delta = \pm 1.0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0.5$ °C в диапазоне св. 100 до 1300 °C		в диапазоне св. 100 до 600 °C; $\Delta = \pm (0.5 + 0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C
3	Температура газовоздушной смеси от 0 до	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2,4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm 0,004 \cdot t$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 3.4$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 2.9$ °C в диапазоне св. 100 до 600 °C; $\Delta = \pm (0.5 \pm 0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C
3	в сварочной зоне (середина)	1300 °C	Модуль 6ES7 331-7PF11-0AB0	15772-11	$\Delta = \pm 1.0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0.5$ °C в диапазоне св. 100 до 1300 °C		
4	Температура газовоздушной смеси в томильной зоне (передний конец)	от 0 до 1300°С	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm 0.004 \cdot t$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 3.4$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 2.9$ °C в диапазоне св. 100 до 600 °C; $\Delta = \pm (0.5 + 0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C

Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1пр сортопрокатного цеха АО «ЕВРАЗ ЗСМК». Методика поверки

1	2	3	4	5	6	7	8
			Модуль 6ES7 331-7PF11-0AB0	15772-11	$\Delta = \pm 1.0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0.5$ °C в диапазоне св. 100 до 1300 °C		
5	Температура газовоздушной смеси	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm 0.004 \cdot t$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 3.4$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 2.9$ °C
3	в томильной зоне (задний конец)	в томильной зоне 1300 °C	15772-11	$\Delta = \pm 1.0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0.5$ °C в диапазоне св. 100 до 1300 °C		в диапазоне св. 100 до 600 °C; $\Delta = \pm (0.5 + 0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C	
6	Температура газовоздушной смеси в томильной зоне (середина)	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2,4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm 0,004 \cdot t$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 3,4$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 2,9$ °C	
6		в томильной зоне 1300 °C		15772-11	$\Delta = \pm 1.0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0.5$ °C в диапазоне св. 100 до 1300 °C		в диапазоне св. 100 до 600 °C; $\Delta = \pm (0.5 + 0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C

1	2	3	4	5	6	7	8		
7	Температура воздуха после рекуператора (защита рекуператора)	от 0 до 1000°C	Преобразователь термоэлектрический TXA-1192-TM1	31930-07	$\Delta = \pm 2.5$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm 0.0075 \cdot t$ °C в диапазоне св. 333 до 1000 °C		$\Delta = \pm 3.0$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm (0.5 + 0.0075 \cdot t)$ °C в диапазоне св. 333 до 1000 °C		
			Модуль 6ES7 331-7PF11-0AB0	15772-11	$\Delta = \pm 0.5$ °C		св. 333 до 1000 С		
8	Температура отходящих газов в боров	от 0 до 1000°C	Преобразователь термоэлектрический ТХА-1192-ТМ1	31930-07	$\Delta = \pm 2.5$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm 0.0075$ °C в диапазоне св. 333 до 1000 °C		$\Delta = \pm 3.0$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm (0.5+0.0075 \cdot t)$ °C в диапазоне		
			Модуль 6ES7 331-7PF11-0AB0	15772-11	$\Delta = \pm 0.5$ °C		св. 333 до 1000 °C		
			Преобразователь давления измерительный Sitrans P DSIII 7MF4433	30883-05	$\gamma = \pm (0.0029 \cdot P_{\text{max}}/P_{\text{n}} + 0.071) \%$				
9	Расход газа в сварочной зоне	от 625 до 12500 м ³ /ч	Модуль ввода аналоговых сигналов 6ES7 331- 7KF02-0AB0 контроллера программируемого SIMATIC S7 серии S7-300 (далее – Модуль 6ES7 331-7KF02-0AB0)	15772-11	$\gamma = \pm 0.5 \%$		$\delta = \pm 2.8 \%$		
10	Расход воздуха в	от 2000 до 40000 м ³ /ч	Преобразователь давления измерительный Sitrans P DSIII 7MF4433	30883-05	$\gamma = \pm (0.0029 \cdot P_{\text{max}}/P_{\text{B}} + + 0.071) \%$		δ = ± 2,9 %		
	сварочной зоне	40000 M /4	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		1 CA 5133		
11	Расход газа в	от 500 до 10000 м ³ /ч	Преобразователь давления измерительный Sitrans P DSIII 7MF4433	45743-10	$\gamma = \pm (0.0029 \cdot P_{\text{max}}/P_{\text{B}} + + 0.071) \%$		$\delta = \pm 2.8 \%$		
	томильной зоне	10000 M /4	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$				
12	Расход воздуха в	от 1250 до 25000 м ³ /ч	Преобразователь давления измерительный Sitrans P DSIII 7MF4433	30883-05	$\gamma = \pm (0.0029 \cdot P_{\text{max}}/P_{\text{g}} + + 0.071) \%$		$\delta = \pm 2.8 \%$		
	томильной зоне	23000 M /4	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$				
13	Давление смешанного	от 0 до	Преобразователь давления измерительный Sitrans P210 7MF1566	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$		
	газа в сварочной зоне	газа в сварочной зоне	1000 кгс/м ²	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		1 - 2,0 /4	

Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1пр сортопрокатного цеха АО «ЕВРАЗ ЗСМК». Методика поверки

1	2	3	4	5	6	7	8	
14	Давление смешанного	от 0 до	Преобразователь давления измерительный Sitrans P210 7MF1566	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$	
	газа в томильной зоне	1000 кгс/м²	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			
15	Давление смешанного	от 0 до	Преобразователь давления измерительный Sitrans P210 7MF1566	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$	
	газа на печь	1000 кгс/м²	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			
16	Давление воздуха на	от 0 до	Преобразователь давления измерительный Sitrans P210 7MF1566	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$	
	печь	1000 кгс/м2	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			
17	Давление-разряжение от ма 7 газовоздушной смеси		Датчик давления Метран-150	32854-13	$\gamma = \pm~0.10~\%$		$\gamma = \pm 0.5 \%$	
	в печи	5 мм вод.ст.	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		1.	
18	Давление азота на	от 0 до	Преобразователь давления измерительный Sitrans P220 7MF1567	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$	
	печь	печь 1000 кгс/м ² Модуль 6ES7 331-7KF02-0AB0	15772-11	$y = \pm 0.5 \%$				
19	Температура металла	от 600 до	ИК-Пирометр «Термоскоп» модификации Термоскоп-800	26443-04	$\gamma = \pm 0.75 \%$		$\Delta = \pm 12,0$ °C	
	на выходе из печи	1500 °C	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$			

Примечание — В таблице приняты следующие сокращения и обозначения: $\Phi U \Phi O E U - \Phi$ едеральный информационный фонд по обеспечению единства измерений; Δ – абсолютная погрешность измерений; δ – относительная погрешность измерений; γ – приведенная погрешность измерений; t – измеренное значение температуры

Приложение Б

(рекомендуемое)

Образец оформления протокола поверки

протокол поверки

Средство измерений (СИ)		№	от «	»	20	Γ.
средство измерении (СП)		нование, т	нп			
заводской номер (номера)						
принадлежащее						
нанмено	вание юридического (ф	изического	о) лица			
поверено в соответствии с	менование и номер лок	умента на	методику пов	ерки		_
с применением эталонов:						
наименов	ание, заводской номер,	разряд, кла	асс или погре	шность		
при следующих значениях влияющих факт	горов:					
 температура окружающего воздуха 	**************************************					
 атмосферное давление кПа% 						
относительная влажность%;напряжение питания В;						
напряжение пятания В;частота Гц.						
Результаты операций поверки						
1 Рассмотрение документации						
2 Внешний осмотр						
3 Проверка сопротивления защитного зазег						
4 Проверка условий эксплуатации компоне						
5 Опробование						
6 Подтверждение соответствия программи	ого обеспечения	иУС				
7 Определение погрешности измерений и с	синхронизации і	времен	и			
8 Проверка метрологических характеристи	к измерительнь	іх кана.	пов ИУС			
Результаты проверки метрологических ха таблице (форма таблицы в Приложени	Section 1 at 1 and 1 at 1 a				УС приве,	дены в
Заключение СИ (не) соответствует метроло	эгическим требо	ваниям	·			
Руководитель отдела (группы)						
подп	ись		инициалы, ф	випима		
Поверитель						
подпись	инициалы, фа	видия				

Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1пр сортопрокатного цеха АО «ЕВРАЗ ЗСМК». Методика поверки

. (...

Приложение В

(рекомендуемое)

Образец приложения к свидетельству о поверке

		Диапазон	Диапазон Средства измерени состав ИК			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	огрешность ИУС
Номер ИК ИУС	Наименование ИК ИУС	измерений физической величины, ед. измерений	Наименование, тип СИ, заводской номер	Номер в Гос. реестре СИ	Пределы допускаемой основной погрешности СИ	фактическая	границы допускаемой погрешности

Приложение Г

(справочное)

Перечень ссылочных нормативных документов

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

ГОСТ 8.508-84 ГСИ. Метрологические характеристики средств измерений и точностные характеристики средств автоматизации ГСП. Общие методы оценки и контроля.

ГОСТ 18404.0-78 Кабели управления. Общие технические условия.

ГОСТ 26411-85 Кабели контрольные. Общие технические условия.

ГОСТ Р МЭК 870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров.

РМГ 62-2003 ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации.

МИ 2439-97 ГСИ. Метрологические характеристики измерительных систем. Номенклатура. Принципы регламентации, определения и контроля.