УТВЕРЖДАЮ

Первый заместитель генерального директора — заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

2017 F

ИНСТРУКЦИЯ

Источники оптического излучения перестраиваемые N7711A, N7714A Методика поверки

651-17-024 MΠ

ОБЩИЕ СВЕДЕНИЯ

Настоящая методика поверки распространяется на источники оптического излучения перестраиваемые N7711A, N7714A (далее – источники), и устанавливает методы и средства их первичной и периодической поверок.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

- 1.1 Перед проведением поверки источников провести внешний осмотр и операции подготовки ее к работе.
- 1.2 Метрологические характеристики источников, подлежащие проверке, и операции поверки приведены в таблице 1.

Таблица 1

	Номер	Проведение операции при	
Наименование операции	пункта	первичной по-	периодической
	методики	верке (после	поверке
	поверки	ремонта)	
1 Внешний осмотр	7.1	да	да
2 Опробование	7.2	да	да
3 Определение (контроль) метрологических			
характеристик			
3.1 Определение диапазона и абсолютной	7.3	да	да
погрешности установки длины волны			
3.2 Определение максимального уровня	7.4	да	да
средней мощности выходного оптического			
излучения			
3.3 Определение разрешения при установке	7.5	да	да
выходной оптической мощности			
3.4 Определение уровня средней мощности	7.6	да	да
оптического излучения при закрытом за-			
творе			

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуемые средства поверки, в том числе рабочие эталоны и средства измерений, приведены в таблице 2.

Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой погрешностью.

2.2 Все средства поверки должны быть исправны, применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке с неистекшим сроком действия на время проведения поверки или оттиск поверительного клейма на приборе или в документации.

Таблица 2

Номер	Наименование рабочих эталонов или вспомогательных средств поверки; номер
пункта ме-	документа, регламентирующего технические требования к рабочим эталонам
тодики	или вспомогательным средствам; разряд по государственной поверочной схеме
	и (или) метрологические и основные технические характеристики средств по-
	верки
7.3	Анализатор спектра оптический MS9740A: диапазон измерений длин волн от
	600 до 1700 нм; пределы допускаемой абсолютной погрешности измерений
	длины волны (в диапазоне $1520 - 1620$ нм) $\pm 0,02$ нм.
7.3	Аппаратура измерительная длин волны в волоконно-оптических системах пере-
	дачи информации РЭДВ: диапазон воспроизводимых длин волн от 1260 до 1340
	нм и от 1530 до 1630 нм; относительная погрешность определения длин волн не
	более $\pm 5.10^{-6}$.
7.4, 7.5, 7.6	Аппаратура измерительная оптическая РЭСМ-ВС: диапазон измерений средней
	мощности оптического излучения от 10 ⁻¹⁰ до 10 ⁻² Вт; диапазон длин волн иссле-
	дуемого излучения от 600 до 1700 нм; предел допускаемой относительной по-
	грешности измерений средней мощности оптического излучения на длинах
	волн калибровки: 2,5 %; предел допускаемой относительной погрешности из-
	мерений средней мощности оптического излучения в рабочем спектральном
	диапазоне 5 %; предел допускаемой относительной погрешности измерений от-
	носительных уровней мощности 1,2 %.
7.3, 7.4, 7.5	Аттенюатор оптический перестраиваемый FVA-600: максимальное значение
	устанавливаемого ослабления 65 дБ; собственные вносимые потери не более 1,5
	дБ.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1 К проведению поверки источников допускается инженерно-технический персонал со среднетехническим или высшим образованием, имеющим опыт работы с оптоволоконными и радиотехническими установками, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке и имеющий право на поверку (аттестованный в качестве поверителей).

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80 «ССБТ. Испытания и измерения электрические. Общие требования безопасности» и ГОСТ 31581-2012 «Лазерная безопасность. Общие требования безопасности при разработке и эксплуатации лазерных изделий».

5 УСЛОВИЯ ПОВЕРКИ

5.1 Поверку проводить при следующих условиях:

- температура окружающего воздуха, $^{\circ}$ С (K) 20 ± 5 (293 \pm 5);

- относительная влажность воздуха, % 65 ± 15;

- атмосферное давление, кПа (мм рт. ст.) $100 \pm 4 (750 \pm 30)$;

- параметры питания от сети переменного тока:

- напряжение, В 220 ± 22 ; - частота, Γ ц 50 ± 0.5 .

- 5.2 При проведении операций поверки должны соблюдаться условия, указанные в РЭ на поверяемый источник и средства поверки.
- 5.3 При отрицательных результатах поверки по любому из пунктов таблицы 1 источник бракуется и направляется в ремонт.

6 ПОДГОТОВКА К ПОВЕРКЕ

6.1 Поверитель должен изучить РЭ поверяемого источника и используемых средств поверки.

- 6.2 Перед проведением операций поверки необходимо:
- проверить комплектность поверяемого источника;
- проверить комплектность рекомендованных (или аналогичных им) средств поверки, заземлить (если это необходимо) рабочие эталоны и средства измерений, включить питание заблаговременно перед очередной операцией поверки (в соответствии со временем установления рабочего режима, указанным в РЭ).

7 ПРОВЕДЕНИЕ ПОВЕРКИ

- 7.1 Внешний осмотр
- 7.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений и ослабления элементов, четкость фиксации их положения, чёткость обозначений;
 - исправность органов управления.
- 7.1.2 Результаты внешнего осмотра считать положительными, если отсутствуют внешние механические повреждения и неисправности, влияющие на работоспособность источника, органы управления находятся в исправном состоянии.

7.2 Опробование

- 7.2.1 Подготовить к работе источник согласно его руководства по эксплуатации. Подключить источник к персональному компьютеру с установленным специальным программным обеспечением для работы с источниками. Включить аппаратуру и выдержать в течение времени прогрева, установленного в его технической документации.
- 7.2.2 Убедиться в возможности установки режимов работы и настройки основных параметров режимов работы источника.
- 7.2.3 Результаты опробования считать положительными, если при включении отсутствуют сообщения о неисправности и источник позволяет менять настройки параметров и режимы работы.

Определение (контроль) метрологических характеристик

- 7.3 Определение диапазона и абсолютной погрешности установки длины волны.
- 7.3.1 Собрать установку в соответствии со схемой, представленной на рисунке 1. Соединить оптическим кабелем выход «СЛД» аппаратуры измерительной РЭДВ с входом анализатора спектра оптического.

Рисунок 1

 $7.3.2~\mathrm{C}$ помощью анализатора спектра зарегистрировать спектр оптического излучения, поступающего с РЭДВ, в полосе обзора 1 нм, включающей паспортное значение длины волны пика поглощения $\lambda_{\mathrm{РЭДВ}}$ 1 535,236 нм, указанное в эксплуатационной документации аппаратуры РЭДВ. По показаниям анализатора спектра оптического определить измеренное значение дли-

ны волны пика поглощения λ_{AC} и значение поправки к показаниям анализатора спектра $\lambda_{\Pi} = \lambda_{P3\Pi B} - \lambda_{AC}$.

7.3.3 Установить в меню управляющей программы источника значение длины волны $\lambda_{\text{УСТ}}$, равное длине волны пика поглощения ($\lambda_{\text{УСТ}} = \lambda_{\text{РЭДВ}}$). Подать оптическое излучение с источника на вход анализатора спектра оптического через аттенюатор, не изменяя настроек анализатора спектра. Измерить с помощью анализатора спектра центральную длину волны оптического излучения, поступающего с источника λ'_{AC} и с учетом поправки определить действительное значение длины волны оптического излучения, поступающего с источника: $\lambda_{\text{ИСТ}} = \lambda'_{\text{AC}} + \lambda_{\Pi}$.

7.3.4 Повторить операции по п. 7.3.3 еще девять раз, зарегистрировав значения $\lambda_{\text{ИСТ}\,i}$ (i=1...N, N = 10), и определить значения систематической составляющей погрешности установки длины волны θ_{λ} и случайной составляющей погрешности, выраженной в виде среднего квадратического отклонения (СКО) σ_{λ} по формулам:

$$\lambda_{\text{MCT},i} = \lambda'_{\text{AC},i} + \lambda_{\Pi},\tag{1}$$

$$\theta_{\lambda} = \lambda_{\text{YCT}} - \lambda_{\text{HCT CP}},\tag{2}$$

$$\sigma_{\lambda} = \sqrt{\frac{\sum_{i=1}^{N} \left(\lambda_{\text{MCT }i} - \lambda_{\text{MCT }CP}\right)^{2}}{N-1}},$$
(3)

где

$$\lambda_{\text{MCT CP}} = \frac{1}{N} \sum_{i=1}^{N} \lambda_{\text{MCT } i} . \tag{4}$$

7.3.5 Повторить операции по п.п. 7.3.2 – 7.3.4 для паспортных значений длин волн пиков поглощения $\lambda_{PЭДВ}$, составляющих 1 538,168; 1 542,885; 1 545,389; 1 556,373; 1 560,383; 1 563,094 (для источников с диапазоном перестройки длины волны от 1527,60 до 1565,50 нм) и 1 579,739; 1 584,270; 1 589,240; 1 599,128; 1 600,964; 1 601,627; 1 605,339 нм (для источников с диапазоном перестройки длины волны от 1570,01 до 1608,76 нм) и определить значения систематической и случайной составляющих погрешности установки длины волны $\theta_{\lambda j}$ и $\sigma_{\lambda j}$ для каждой j-й длины волны по формулам (1) – (4).

7.3.6 Определить границы абсолютной погрешности установки длины волны источника Δ_{λ} по формуле:

$$\Delta_{\lambda} = \pm 2 \cdot \sqrt{\frac{\left(\theta_{P \ni J/B}^2 + \theta_{\lambda \, max}^2\right)}{3} + \sigma_{\lambda \, max}^2}, \qquad (5)$$

где $\theta_{\lambda max}$ и $\sigma_{\lambda max}$ — максимальные из полученных значений $\theta_{\lambda j}$ и $\sigma_{\lambda j}$ соответственно.

 $\theta_{\it PЭДB}$ — абсолютная погрешность определения длин волн пиков поглощения аппаратуры РЭДВ.

Результаты поверки считать положительными, если значение Δ_{λ} находится в пределах \pm 22 пм.

- 7.4 Определение максимального уровня средней мощности выходного оптического излучения
 - 7.4.1 Собрать установку в соответствии со схемой, представленной на рисунке 2.

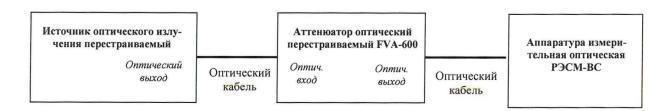


Рисунок 2

7.4.2 Установить на источнике максимальное значение уровня мощности выходного оптического излучения, установить на аттенюаторе значение ослабления 20 дБ. С помощью аппаратуры измерительной оптической РЭСМ-ВС измерить уровень средней мощности оптического излучения $P_{PЭСМ}$, выраженный в децибелах относительно 1 мВт, и определить уровень мощности выходного оптического излучения источника $P_{BЫX}$ по формуле:

$$P_{\text{BЫX MAKC}} = P_{\text{PЭCM}} + 20 \text{ дБ}.$$
 (6)

7.4.3 Операции по 7.4.2 провести для трех значений длин волн оптического излучения, включая минимальное и минимальное в диапазоне установки длины волны источника.

Результаты поверки считать положительными, если полученные значения $P_{\rm BЫX\ MAKC}$ для источников с опциями 210, 240 и 222 (для длин волн от 1527,60 до 1565,50 нм) составляют не менее +13,5 дБ относительно 1 мВт и не менее +11,5 дБ относительно 1 мВт для источников с опциями 201, 204 и 222 (для длин волн от 1570,01 до 1608,76).

- 7.5 Определение разрешения при установке выходной оптической мощности
- 7.5.1 Проверку провести при подключении аппаратуры в соответствии со схемой, представленной на рисунке 2.
- 7.5.2 Установить на источнике максимальное значение уровня мощности выходного оптического излучения, а на аттенюаторе значение ослабления 20 дБ. Контролируя по показаниям аппаратуры РЭСМ-ВС значения оптической мощности, уменьшить уровень выходной мощности источника на 0,1 дБ. По показаниям аппаратуры РЭСМ-ВС убедиться в изменении уровня мощности на 0,1 дБ.
- 7.5.3 Повторить операции по п. 7.5.2 для среднего в диапазоне и минимального значения уровня выходной мощности источника.

Результаты поверки считать положительными, если разрешение при установке выходной оптической мощности составляет 0,1 дБ.

- 7.6 Определение уровня средней мощности оптического излучения при закрытом затворе
- 7.6.1 Соединить оптическим кабелем выход источника и вход аппаратуры измерительной оптической РЭСМ-ВС. Подав команду в меню управляющей программы источника, установить затвор в закрытое положение.
- 7.6.2 Измерить с помощью аппаратуры РЭСМ-ВС уровень мощности оптического излучения при закрытом затворе $P_{\text{Bых 3AKP}}$.

Результаты поверки считать положительными, если уровень мощности оптического излучения при закрытом затворе не превышает минус 45 дБ относительно 1 мВт.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки на источник выдают свидетельство установленной формы.
- 8.2 В случае отрицательных результатов поверки источник к дальнейшему применению не допускается. На него выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин забракования.

Начальник лаборатории № 882 ФГУП «ВНИИФТРИ»