4-23

УТВЕРЖДАЮ

Зам. генерального директора ФБУ «Тест – С.-Петербург»

> Т.М. Козлякова 2015 г.

Государственная система обеспечения единства измерений

Аудиометры SIBELSOUND 400 SUPRA

Методика поверки 433-122-2015 МП

Np.63532-16

Настоящая методика распространяется на аудиометры SIBELSOUND 400 SUPRA (далее - аудиометры), и устанавливает порядок и объем их первичной и периодической поверок. Интервал между поверками 12 месяцев.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

11	Номер		сть проведения щии при
Наименование операции	пункта НД по поверке	первичной поверке	периодической поверке
1. Внешний осмотр	7.1	Да	Да
2. Опробование	7.2	Да	Да
3. Определение погрешности установки частоты тестового тонального сигнала при воздушном звукопроведении	7.3	Да	Да
4. Определение погрешности установки максимальных уровней прослушивания тестового тонального сигнала при воздушном звукопроведении	7.4	Да	Да
5. Определение коэффициента гармоник тестового тонального сигнала при воздушном звукопроведении	7.5	Да	Да
6. Определение погрешности установки частоты тестового тонального сигнала при костном звукопроведении	7.6	Да	Да
7. Определение погрешности установки максимальных уровней прослушивания тестового тонального сигнала при костном звукопроведении	7.7	Да	Да
8. Определение коэффициента гармоник тестового тонального сигнала при костном звукопроведении	7.8	Да	Да
9. Определение погрешности разности уровней прослушивания для двух соседних ступеней при воздушном и костном звукопроведении	7.9	Да	Да
10. Определение ослабления тестового тонального сигнала при его выключении на максимальном уровне по воздушному и костному звукопроведению	7.10	Да	Да
11. Определение погрешности установки максимального уровня прослушивания маскирующего шума	7.11	Да	Да

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на аудиометры медицинские, а также приведенные в таблице 2.

Таблица 2 – Средства измерений

№ п/п	Наименование	Номер пункта НД по поверке
1	«Ухо искусственное» 4152 с капсюлем микрофона 4144, диапазон частот от 50 Γ ц до 8000 Γ ц, пределы допускаемой абсолютной погрешности $\pm 1,0$ дБ	7.3; 7.4; 7.5; 7.9; 7.10; 7.11
2	«Искусственный мастоид» 4930, диапазон частот от 125 Гц до 8000 Гц, пределы допускаемой абсолютной погрешности ±(1 – 2) дБ	7.6; 7.7; 7.8; 7.9; 7.10
3	Шумомер-анализатор спектра 2250, диапазон измерений уровней звука от 20,1 до 140 дБ, пределы допускаемой абсолютной погрешности $\pm 0,7$ дБ	7.4
4	Усилитель измерительный 2690, диапазон частот от 0,1 Γ ц до 100000 Γ ц, относительная расширенная неопределенность калибровки при коэффициенте охвата κ =2 и доверительной вероятности 0,95 откалиброванного выходного сигнала в диапазоне рабочих температур от 0 0 C до +40 0 C составляет ±0,1 дБ	7.3
5	Частотомер универсальный CNT-90XL, диапазон измерений от $0,01$ Γ ц до 46 Γ Γ ц, пределы допускаемой относительной погрешности \pm $5\cdot10^{-7}$	7.3; 7.6
6	Измеритель нелинейных искажений автоматический С6-11, диапазон частот от 20 Гц до 200кГц, диапазон измеряемых коэффициентов гармоник от 0,03 до 30 %, абсолютное значение основной погрешности не более ΔK_r = $\pm (0,05K_{rn}+0,02)$, где K_{rn} – конечное значение шкалы	7.5; 7.8
Прим	м е ч а н и е - Допускается применение других основных и вспомогательных	средств поверки

Примечание - Допускается применение других основных и вспомогательных средств поверки с метрологическими характеристиками, обеспечивающими требуемые точности измерений.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки измерителей допускается инженерно-технический персонал со среднетехническим или высшим инженерным образованием, имеющим опыт работы с аналогичным оборудованием, ознакомленный с инструкцией по эксплуатации. Аттестованный в качестве поверителя в установленном законом порядке.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 К проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности.
- 4.2 При работе с измерительными приборами и вспомогательным оборудованием должны быть соблюдены требования безопасности, оговоренные в соответствующих технических описаниях и инструкциях по эксплуатации применяемых приборов.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха......(20 ± 5) °C;
- относительная влажность воздуха не более 80 %;

- атмосферное давление.....от 94 до 106 кПа

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Проверить наличие средств поверки, укомплектованность их технической документацией (ТД) и необходимыми элементами соединений.
- 6.2 Используемые средства поверки разместить, заземлить и соединить в соответствии с требованиями ТД на указанные средства.
- 6.3 Подготовку, соединение, включение и прогрев средств поверки, регистрацию показаний и другие работы по поверке произвести в соответствии с ТД на указанные средства.
 - 6.4 Подключить аудиометр к источнику питания, прогреть в течение 10 минут.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

Проверку внешнего вида, соответствия аудиометра SIBELSOUND 400 SUPRA комплекту документации, в том числе комплектности и маркировки производят путем визуального сличения внешнего его вида с эксплуатационной документацией.

При проведении внешнего осмотра проверяют:

- комплектность согласно РЭ;
- отсутствие видимых механических повреждений, влияющих на работоспособность аудиометра;
- наличие и прочность крепления органов управления и коммутации, четкость фиксации их положений:
 - четкость маркировок и целостность упаковки;
 - чистота гнезд, разъемов;
- наличие и целостность пломб предприятия-изготовителя, отсутствие следов вскрытия корпуса аудиометра SIBELSOUND 400 SUPRA.

Сделать вывод о пригодности.

7.2 Опробование

Для опробования необходимо включить питание аудиометра, на дисплее отобразится модель аудиометра, а затем аудиологический тест. Переключая органы управления, на дисплее аудиометра должны изменяться частота и уровень сигнала.

Комплектующие телефоны костной и воздушной проводимости на частоте 1000 Гц и уровнем 70 дБ должны издавать звуковой сигнал. Аудиометр готов к использованию.

7.3 Определение погрешности установки частоты тестового тонального сигнала при воздушном звукопроведении

Определение погрешности установки частоты проводят с помощью прибора «Искусственное ухо» 4152, усилителя измерительного 2690 и частотомера универсального CNT-90XL.

Подсоединить частотомер к выходу усилителя измерительного 2690. Установить «правый» телефон на акустическую камеру прибора «Искусственное ухо» 4152, обеспечить силу прижима телефона $(4,5\pm0,5)$ Н. С тон-генератора аудиометра задать сигнал с диапазоном частот и уровнем сигнала указанным в таблице 3.

Произвести измерение частоты сигнала воспроизводимого тон-генератором аудиометра. Полученные значения занести в таблицу 4.

Таблица 3

Частота, Гц	125	250	500	1000	1500	2000	3000	4000	6000	8000
L _{макс} просл., дБ	80	100	120	120	120	120	120	120	110	110
L _{пор} , дБ	45,0	25,5	11,5	7,0	6,5	9,0	10,0	9,5	15,5	13,0

Таблица 4

Г ном, Гц	125	250	500	1000	1500	2000	3000	4000	6000	8000
F _{изм} , Гц						, <u>, , , , , , , , , , , , , , , , , , </u>				
δ, %										

Провести аналогичные измерения для «левого» аудиометрического телефона.

Погрешность рассчитать по формуле:

$$\delta_F = \frac{F_{IJ3M} - F}{F} \cdot 100 \tag{1}$$

где,

F – значение частоты заданное на дисплее аудиометра, Гц

 $F_{\text{изм}}$ – значение частоты измеренное частотомером универсальным CNT-90XL, Γ ц.

Результаты поверки считать положительными, если погрешность установки частоты аудиометра не превышает ± 1.0 %.

7.4 Определение погрешности установки максимальных уровней прослушивания тестового тонального сигнала при воздушном звукопроведении

Определение погрешности установки максимальных уровней прослушивания проводят с помощью прибора «Искусственное ухо» 4152 и шумомера-анализатора спектра 2250.

Установить «правый» аудиометрический телефон на акустическую камеру прибора «Искусственное ухо» 4152, обеспечить силу прижима телефона (4,5±0,5) Н.

В режиме теста «Tone-air» установить по индикатору аудиометра частоту измеряемого сигнала кнопками «Частота» и максимальный уровень тонального сигнала, указанный в таблице 3, «Регулировочной рукояткой».

На установленной частоте измерить уровень звукового давления $L_{\text{изм}}$ в дБ относительно 20 мкПа нажав кнопку «Подача» на передней панели аудиометра.

Провести аналогичные измерения для левого телефона. Полученный результат занести в таблицу 5.

Таблица 5

F, Гц	125	250	500	1000	1500	2000	3000	4000	6000	8000
L _{действ}										
L _{изм}										
Δ, дБ										

Погрешность установки уровней прослушивания в дБ определить по формуле:

$$\Delta = L_{\text{M3M}} - L_{\text{MEÄCTB}} \tag{2}$$

гле.

 $L_{\text{изм}}$ – значение уровня прослушивания измеренное прибором «Искусственное ухо» 4152, дБ

 $L_{\text{действ}}$ – действительное значение уровня прослушивания, определяется как $L_{\text{действ}}$ = $L_{\text{макс}}$ + $L_{\text{пор}}$, дБ.

Результаты поверки считать положительными, если погрешность установки максимальных уровней прослушивания тестового тонального сигнала не превышает \pm 3,0 дБ в диапазоне частот от 125 Γ ц до 4000 Γ ц и \pm 5,0 дБ на частотах 6000 Γ ц и 8000 Γ ц.

7.5 Определение коэффициента гармоник тестового тонального сигнала при воздушном звукопроведении

Определение коэффициента гармоник тестового тонального сигнала проводят с помощью прибора «Искусственное ухо» 4152, усилителя измерительного 2690 и измерителя нелинейных искажений автоматического C6-11.

Установить правый аудиометрический телефон на акустическую камеру прибора «Искусственное ухо» 4152. На индикаторе аудиометра установить частоту 125 Гц с

максимальным уровнем прослушивания 80 дБ. Произвести измерения коэффициента гармоник.

Измерения провести на максимальных уровнях прослушивания на каждой частоте в соответствии с таблицей 3. Аналогичные измерения произвести для левого аудиометрического телефона.

Результаты поверки считать положительными, если коэффициент гармоник тонального сигнала в каждом из телефонов не превышает 2 %.

7.6 Определение погрешности установки частоты тестового тонального сигнала при костном звукопроведении

Определение погрешности установки частоты проводят с помощью прибора «Искусственный мастоид» 4930, усилителя измерительного 2690 и частотомера универсального CNT-90XL.

Присоединить частотомер к выходу усилителя измерительного 2690, подключенного к прибору «Искусственный мастоид» 4930 (далее - мастоид). Установить костный вибратор (далее - вибратор) в центре мастоида и обеспечить силу прижима вибратора к мастоиду (5,4±0,5) Н. Задать сигнал с тон-генератора аудиометра в диапазоне частот и уровнем сигнала приведенным в таблице 6.

Таблица 6

Частота, Гц	250	500	1000	1500	2000	3000	4000	6000
L _{макс} просл., дБ	45	60	70	70	70	70	70	55
L _{пор} , дБ	67,0	58,0	42,5	39,0	31,5	30,0	35,5	40,0

Произвести измерение частоты сигнала воспроизводимого тон-генератором аудиометра. Полученные значения занести в таблицу 7.

Таблица 7

Г ном, Гц	250	500	1000	1500	2000	3000	4000	6000
Г изм, Г Ц			77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
δ, %								

Погрешность рассчитать по формуле:

$$\delta_F = \frac{F_{M3M} - F}{F} \cdot 100 \tag{3}$$

где,

F – значение частоты заданное на дисплее аудиометра, Гц

 $F_{\text{изм}}$ – значение частоты измеренное частотомером универсальным CNT-90XL, Γ ц.

Результаты поверки считать положительными, если погрешность установки частоты аудиометра не превышает \pm 1,0 %.

7.7 Определение погрешности установки максимальных уровней прослушивания тестового тонального сигнала при костном звукопроведении

Определение погрешности установки максимальных уровней прослушивания проводят с помощью прибора «Искусственный мастоид» 4930 и шумомера-анализатора спектра 2250.

Установить костный вибратор в центре мастоида и обеспечить силу прижима вибратора к мастоиду (5.4 ± 0.5) H.

В режиме теста «Tone-bone» установить по индикатору аудиометра частоту измеряемого сигнала и максимальный уровень тонального сигнала, указанный в таблице 6, кнопками «Частота» и «Регулировочная рукоятка».

На установленной частоте измерить уровень сигнала $L_{\text{изм}}$ в дБ относительно 1 мкН нажав кнопку «Подача» на передней панели аудиометра.

Полученный результат занести в таблицу 8.

Таблица 8

F, Tu	250	500	1000	1500	2000	3000	4000	6000
L _{действ}								
L _{изм}								
Δ, дБ								

Погрешность установки уровней прослушивания в дБ определяется по формуле:

$$\Delta = L_{\mathcal{U}3M} - L_{\mathcal{U}F\tilde{\mathcal{U}}CTR} \tag{4}$$

где.

 $L_{\text{изм}}$ — значение уровня прослушивания измеренное шумомером-анализатором спектра 2250, дБ; $L_{\text{лейств}}$ — действительное значение уровня прослушивания, определяется как $L_{\text{лейств}}$ = $L_{\text{макc}}$ + $L_{\text{пор}}$, дБ.

Результаты поверки считать положительным, если погрешность установки максимальных уровней прослушивания тестового тонального сигнала не превышает \pm 5,0 дБ в диапазоне частот от 250 до 6000 Γ ц.

7.8 Определение коэффициента гармоник тестового тонального сигнала при костном звукопроведении

Определение коэффициента гармоник тестового тонального сигнала проводят с помощью прибора «Искусственный мастоид» 4930, усилителя измерительного 2690 и измерителя нелинейных искажений автоматического C6-11.

Определение коэффициента гармоник проводят на максимальных уровнях прослушивания на каждой частоте в соответствии с таблицей 6.

Установить вибратор на «Искусственный мастоид» 4930. По индикатору аудиометра установить частоту 250 Гц с максимальным уровнем прослушивания 45 дБ, провести измерения.

Результаты поверки считать положительными, если коэффициент гармоник тонального сигнала не более 5 %.

7.9 Определение погрешности разности уровней прослушивания для двух соседних ступеней при воздушном и костном звукопроведении

Определение погрешности разности уровней прослушивания проводят с помощью прибора «Искусственное ухо» 4152, «Искусственный мастоид» 4930 и шумомера-анализатора спектра 2250.

На частоте 4000 Гц на всех уровнях прослушивания, начиная с максимального (120 дБ), произвести измерения уровня тестового тонального сигнала. Уменьшать уровень сигнала с шагом 5 дБ регулировочной рукояткой от 120 дБ до минус 10 дБ для воздушной проводимости и от 70 дБ до минус 10 дБ для костной проводимости.

Определить ослабление сигнала для каждого уровня прослушивания по формуле:

$$B_n = D_{MAKC} - D_n \tag{5}$$

где,

 D_n – измеренное значение каждой ступени, дБ.

D_{макс} – измеренное значение на уровне 120 дБ, дБ.

Погрешность ослабления каждой ступени определить по формуле:

$$\Delta B = B_n - \left(L_{MAKC,\Pi POC,T} - A_n\right) \tag{6}$$

где,

A_n – номинальное значение уровня n-ой ступени по индикатору аудиометра.

Погрешность разности уровней прослушивания для двух соседних степеней определить по формуле:

$$\Delta B_n = \left(B_{n+1} - B_n \right) - 5 \tag{7}$$

где.

 B_n и B_{n+1} – ослабление n и n+1ступеней.

Результаты поверки считать положительными, если погрешность разности уровней прослушивания для двух соседних ступеней находится в пределах $\pm 1,0$ дБ.

7.10 Определение ослабления тестового тонального сигнала при его выключении на максимальном уровне по воздушному и костному звукопроведению

Определение ослабления тестового тонального сигнала при его выключении аудиометра проводят с помощью прибора «Искусственное ухо» 4152, «Искусственный мастоид» 4930 и шумомера-анализатора спектра 2250.

Измерения провести на частоте 4000 Гц при максимальном уровне прослушивания (120 дБ). Отпустить кнопку «Подача», зафиксировать показание прибора ($D_{выкл}$).

Определить ослабление тонального сигнала при его выключении на максимальном уровне по формуле:

$$B = D_{MAKC} - D_{BMK/I} \tag{8}$$

гле.

D_{выкл} – показание прибора без подачи сигнала, дБ.

D_{макс} – измеренное значение на уровне 120 дБ, дБ.

Результаты измерений считать положительными, если ослабление тонального сигнала не менее 95 дБ для воздушного звукопроведения и 70 дБ для костного звукопроведения.

7.11 Определение погрешности установки максимального уровня прослушивания маскирующего шума

Измерения проводят с помощью прибора «Искусственное ухо» 4152 и шумомераанализатора спектра 2250.

Установить левый аудиометрический телефон на акустическую камеру прибора «Искусственное ухо» 4152.

В режиме теста «Тone-air» установить по индикатору аудиометра частоту 1000 Гц для правого аудиометрического телефона с максимальным уровнем сигнала (120 дБ). На дисплее аудиометра включить функцию маскировка «ON», уровень сигнала 100 дБ. Измерить максимальный уровень маскирующего шума с левого аудиометрического телефона.

Аналогично провести измерения для правого аудиометрического телефона.

Погрешность установки максимального уровня прослушивания рассчитать по формуле:

$$\Delta_{MAKC} = L_{MAKC} - L_{HOM} \tag{9}$$

гле.

L_{макс} – измеренное значение уровня маскирующего шума, дБ;

L_{ном} – заданное значение уровня маскирующего шума на индикаторе аудиометра, дБ.

Результаты поверки считать положительными, если погрешность установки уровня прослушивания находится в пределах от плюс 5 до минус 3 дБ.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки аудиометра SIBELSOUND 400 SURPA выдается свидетельство установленной формы. На оборотной стороне свидетельства о поверке записываются результаты поверки (при необходимости).
- 8.2 В случае отрицательных результатов поверки поверяемый прибор к дальнейшему применению не допускается. На такой прибор выдается извещение об его непригодности к дальнейшей эксплуатации с указанием причин.