ООО «Производственное Объединение ОВЕН»

УТВЕРЖДАЮ Руководитель ГЦИ СИ ФЕУП «ВНИИМС»

ИНСТРУКЦИЯ

МОДУЛИ ВВОДА АНАЛОГОВЫЕ ИЗМЕРИТЕЛЬНЫЕ МВА8

МЕТОДИКА ПОВЕРКИ КУВФ. 421459.001МП1

Москва

СОДЕРЖАНИЕ

3
3
3
3
5
5
5
6
6
6
6
8
13

Изм.	Лист	№ докум.	Подпись	Дата

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая рекомендация распространяется на модули ввода аналоговые измерительные MBA8 (далее - модули) пр-ва ООО «Производственное Объединение ОВЕН», г. Москва и устанавливает методику их первичной и периодической поверок.

Межповерочный интервал – 3 года.

2 НОРМАТИВНЫЕ ССЫЛКИ

- ПР 50.2.006-94 Государственная система обеспечения единства измерений. Порядок проведения поверки средств измерений.
- ПР 50.2.012-94 Государственная система обеспечения единства измерений. Порядок аттестации поверителей средств измерений.
- ГОСТ 12.3.019-80 Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности.
- ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.
- ГОСТ 6651-2009 Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.
- ГОСТ Р 8.585-2001 Государственная система обеспечения единства измерений. Термопары.

Номинальные статические характеристики преобразования.

ГОСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные.

3 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют следующие операции:

- внешний осмотр (п.8.1);
- проверка электрического сопротивления изоляции (п.8.2);
- опробование (п.8.3);
- определение основной приведенной погрешности модуля (п.8.4).

4 СРЕДСТВА ПОВЕРКИ

- 4.1 Средства измерений, используемые в качестве мер входного сигнала поверяемого прибора, должны иметь технические характеристики, обеспечивающие поверку в диапазоне измерений поверяемого модуля.
- 4.2 Измерительная цепь (включая меры входного сигнала), при помощи которой поверяют модули, должна обеспечивать такую точность измерений, при которой верно неравенство: $\Delta_{II} \leq \frac{1}{3} \Delta_{II}$, где Δ_{II} предел допускаемого абсолютного значения основной погрешности поверяемого модуля.
- 4.3 Для определения основных погрешностей модуля необходимо применять следующие средства поверки.
 - 4.3.1 При измерении входных сигналов от термопреобразователей сопротивления:
- магазин сопротивлений (мера сопротивления): диапазон выходных сопротивлений 0,001 Ом 10 кОм; класс точности не более 0,02 (например, P4831, МСР-60М, калибратор унифицированных сигналов ИКСУ 2000).

						Лист
					КУВФ.421459.001МП1	3
Изм.	Лист	№ докум.	Подпись	Дата		3

- 4.3.2 При измерении входных сигналов от термоэлектрических преобразователей:
- низкоомный потенциометр постоянного тока или калибратор напряжения постоянного тока, используемые в качестве меры напряжения с диапазоном выходного сигнала от 0 до 100 мВ; класс точности не более 0,05 (например, потенциометры постоянного тока Р306, Р348, Р363, ПП-63; универсальный переносной измерительный прибор типа УПИП-60М; компаратор напряжений Р3003; калибратор напряжения П 320; установки В1-12, В1-13, В1-28; калибратор унифицированных сигналов ИКСУ 2000);
- жидкостной термостат (аттестованный метрологической службой, проводящей поверку) для обеспечения стабильной температуры холодных спаев термоэлектродных и медных проводов.

Термостат в условиях поверки должен обеспечивать такое постоянство температуры, при котором за время поверки прибора изменение температуры, выраженное в процентах, не должно превышать $^1/_{10}$ $\gamma_{\rm n}$, где $\gamma_{\rm n}$ – предел допускаемого значения приведенной основной погрешности поверяемого прибора.

Термостат в условиях поверки должен быть снабжен термометром в месте расположения спаев термоэлектродных и медных проводов: диапазон (0...50) °C; ц.д. 0,1 °C; допускаемая погрешность $\pm 0,2$ °C (например, ТЛ-4).

- аттестованные (метрологической службой, проводящей поверку) удлиняющие компенсационные провода. Значение ТЭДС скомплектованной пары проводов при температуре рабочего и свободных концов пары, соответственно равной $100\,^{\circ}$ С и $0\,^{\circ}$ С, не должно отклоняться от значений соответствующей типу ТП НСХ более чем на \pm 0,2 $\Delta_{\text{доп}}$, где $\Delta_{\text{доп}}$ предел допускаемых отклонений значений ТЭДС ТП от значений НСХ, указанных в ГОСТ, выраженного в милливольтах (для ТХК (L) 0,036 мВ, для ТХК (E) 0,020 мВ, для ТЖК (J) 0,016 мВ, для ТХА (K) 0,012 мВ, для ТНН (N) 0,009 мВ, для ТСС (I) 0,012 мВ, для ТПП10 (S) 0,002 мВ, для ТПП13 (R) 0,002 мВ).
- 4.3.3 При измерении входных сигналов от датчиков с унифицированными сигналами постоянного тока:
- источник постоянного тока с диапазоном выходного сигнала от 0 до 20 мА; класс точности не хуже 0,01 (например, калибратор тока П 321, калибратор унифицированных сигналов ИКСУ 2000);
- сопротивление 100 Ом класс точности не хуже 0,05 (например, магазин сопротивлений МСР-63 или катушка электрического сопротивления P331)

или:

- вольтметр с диапазонами входных сигналов постоянного напряжения от 0 до 10 В, класс точности не более 0,01/0,03 (например, универсальные вольтметры В7-46, Щ31);
- сопротивление 100 Ом класс точности не хуже 0,05 (например, магазин сопротивлений МСР-63 или катушка электрического сопротивления P331);
- источник постоянного напряжения с максимальным выходным напряжением 10 В, обеспечивающим постоянство напряжения, при котором за время определения основной погрешности прибора на одной отметке изменение тока, выраженное в процентах не должна превышать $^{1}/_{10}$ γ_{π} , где где γ_{π} предел допускаемого значения приведенной основной погрешности поверяемого прибора (например, источник питания постоянного тока Б5-44A, Б5-47, Б5-48, Б5-49).
- 4.3.4 При измерении входных сигналов от датчиков с унифицированными сигналами постоянного напряжения:
- источник регулируемого напряжения класс точности не хуже 0.01 (например, калибратор напряжения Π 320; компаратор напряжений P3003; установки B1-12, B1-13, B1-28).
- 4.4 Мегаомметр для измерения сопротивления изоляции с номинальным напряжением 500 В класс точности 1,0 (например, M4100/3).

						Лист
					КУВФ.421459.001МП1	А
Изм.	Лист	№ докум.	Подпись	Дата		7

- 4.5 Допускается применять другие средства поверки, в том числе автоматизированные, удовлетворяющие требованиям настоящей методики.
- 4.6 Средства поверки должны быть исправны и поверены в соответствии с ПР50.2.006.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 5.1 При проведении поверки необходимо соблюдать требования ГОСТ 12.3.019 92, «Правил технической эксплуатации электроустановок потребителей», «Правил техники безопасности при эксплуатации электроустановок потребителей».
- 5.2 Любые подключения модулей производить только при отключенном напряжении питания модуля.

ВНИМАНИЕ! На открытых контактах клеммных колодок модуля напряжение опасное для жизни – 220 В.

- 5.3 К работе с модулями допускаются лица, изучившие РЭ модулей, знающие принцип действия используемых средств измерений и прошедшие инструктаж по технике безопасности (первичный и на рабочем месте) в установленном в организации порядке.
- 5.4 К поверке допускаются лица, освоившие работу с модулями и используемыми эталонами, изучившими настоящую рекомендацию, аттестованных в соответствии с ПР 50.2.012 и имеющих достаточную квалификацию для выбора методики поверки и выбора соответствующих эталонов (пп. 4.3.1...4.3.4 настоящей рекомендации).

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки соблюдают следующие условия:

6.2 Средства поверки и поверяемые модули должны быть защищены от вибраций и ударов.

7 ПОДГОТОВКА К ПОВЕРКЕ

7.1 Подготовить к работе поверяемый модуль в соответствии с указаниями, изложенными в РЭ модуля.

Модули включают на предварительный прогрев не менее чем за 20 мин до начала поверки.

К модулям, поверяемым по схеме, указанной на рисунке 6, термоэлектродные провода, холодные спаи которых с медными проводами помещены в термостат, подключают не менее чем за 2 ч до начала измерений.

- 7.2 Подготовить к работе средства поверки в соответствии с распространяющимися на них эксплуатационными документами.
- 7.3 Управление работой модуля при поверке, задание его программируемых параметров должны производиться в соответствии с указаниями РЭ на модуль.

						Лист
					КУВФ.421459.001МП1	5
Изм.	Лист	№ докум.	Подпись	Дата		3

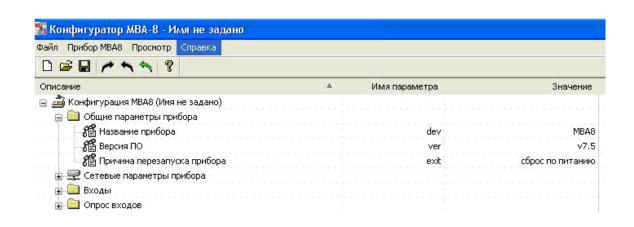
8 ПРОВЕДЕНИЕ ПОВЕРКИ

Все действия с модулем (программирование и т.д.), а также подключение первичных преобразователей должны производиться в соответствии с руководством по эксплуатации.

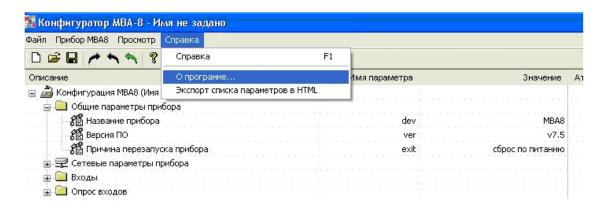
8.1 Внешний осмотр

- 8.1.1 При проведении внешнего осмотра должно быть проверено соответствие модуля следующим требованиям:
- модуль должен быть представлен на поверку с эксплуатационной документацией, входящей в комплект поставки модуля (паспорт, компакт-диск с программным обеспечением и руководство по эксплуатации).
- модуль должен быть чистым и не иметь механических повреждений на корпусе и лицевой панели;
- модуль не должен иметь механических повреждений входных и выходных клеммных соединителей;
 - на модуле должна быть маркировка, соответствующая РЭ.
- 8.1.2 При обнаружении механических дефектов, а также несоответствия маркировки эксплуатационной документации определяется возможность проведения поверки и дальнейшего использования модуля.

8.2 Проверка электрического сопротивления изоляции


- 8.2.1 Определение электрического сопротивления изоляции токоведущих цепей поверяемого модуля относительно его корпуса производить между контактами для подсоединения сетевого напряжения и корпусом по методике, изложенной в ГОСТ Р 52931, в климатических условиях, приведенных в п. 6.1 настоящей МП.
- 8.2.2 Прибор считают выдержавшим испытание, если измеренное сопротивление изоляции не менее 20 МОм.

8.3 Опробование


- 8.3.1 Приборы устанавливают в нормальное рабочее положение.
- 8.3.2 Перед проведением поверки выполнить следующие действия:
- при выключенном питании подключить модуль к компьютеру согласно РЭ модуля;
 - включить питание модуля;
 - включить питание компьютера и дождаться загрузки операционной системы;
 - загрузить на компьютере среду программирования и установить связь с модулем.
 - 8.3.3 Определение идентификационного наименования программного обеспечения.

Сведения об идентификационном наименовании автономной части программного обеспечения «Конфигуратор МВА8» представлены в окне «Конфигуратор МВА8»: меню *Справка* > *О программе*... (см. рис. 1 - 3).

						Лист
					КУВФ.421459.001МП1	6
Изм	Пист	№ локум	Полпись	Лата		0

Рисунок 1

Рисунок 2

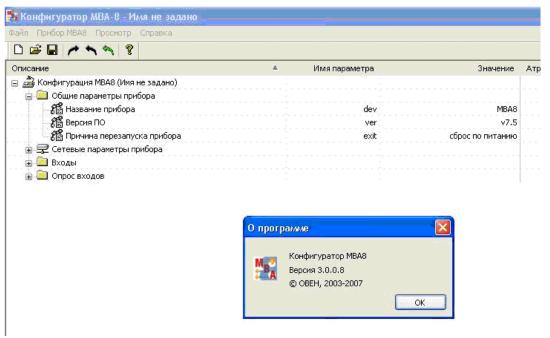


Рисунок 3

						Лист
					КУВФ.421459.001МП1	7
Изм.	Лист	№ докум.	Подпись	Дата		,

Сведения о номере версии (идентификационном номере) встроенной части программного обеспечения представлены в окне «Конфигуратор МВА8»: меню Конфигурация МВА8 > Общие параметры прибора > Версия ПО... (см. рис. 4).

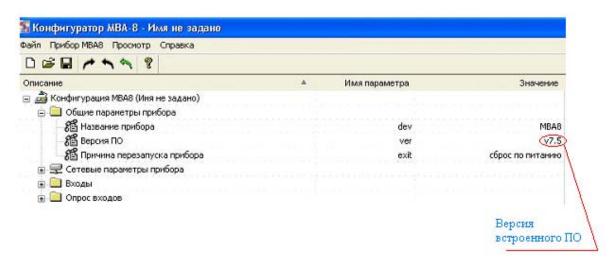


Рисунок 4

Результат подтверждения соответствия программного обеспечения считается положительным, если полученные идентификационные данные программного обеспечения (идентификационное наименование программного обеспечения, номер версии (идентификационный номер) программного обеспечения) соответствуют идентификационным данным, указанным в разделе «Метрологические и технические характеристики» описания типа средства измерений.

- 8.3.4 В соответствии с указаниями руководства по эксплуатации проверить во всех каналах заданные значения параметров коррекции измеряемых величин **in.SH** (сдвиг характеристики) и **in.SL** (наклон характеристики) и установить их равными соответственно **000.0** и **1.000**.
- 8.3.5 В соответствии с указаниями руководства по эксплуатации отключить во всех каналах цифровые фильтры, установив в параметрах **in.Fd** (постоянная времени фильтра) и **in.FG** (полоса пропускания фильтра) нулевые значения.

Примечание — Действия, выполняемые по п.п. 8.3.3, 8.3.4 кроме опробования модуля служат одновременно и для подготовки проведения дальнейших операций.

8.3.6 Выбрать в среде программирования вход и тип датчика.

8.4 Определение основной приведенной погрешности измерения входных величин модуля

Номинальные статические характеристики преобразования (HCX) термопреобразователей сопротивления соответствуют ГОСТ 6651, HCX термоэлектрических преобразователей соответствуют ГОСТ Р 8.585, источники унифицированных сигналов соответствуют ГОСТ 26.011.

При первичной поверке модулей значения основной приведенной погрешности определяют для следующих типов датчиков:

- термопреобразователь сопротивления $100~\Pi~(\alpha=0.00391~^{\circ}\text{C}^{-1});$
- термоэлектрический преобразователь ТХА(К);
- любой унифицированный сигнал постоянного тока;
- любой унифицированный сигнал постоянного напряжения;

						Лист
					КУВФ.421459.001МП1	8
Изм.	Лист	№ докум.	Подпись	Дата		O

- любой сигнал активного сопротивления.

Поверка производится в точках 0, 50 и 100 % диапазона измерений на одном (любом) входе.

При периодической поверке основную приведенную погрешность определяют в точках, соответствующих 0, 25, 50, 75, 100 % диапазона измерений.

В случае, когда модуль работает только с заданным пользователем типом первичного преобразователя, допускается определять погрешность модуля в указанных контрольных точках при работе только с заданным преобразователем, при этом в свидетельстве о поверке указываются тип первичного преобразователя и диапазон измерений.

В случае, когда комплектация модуля первичными преобразователями (датчиками) в процессе эксплуатации не известна, либо может изменяться, поверка производится по методике первичной поверки.

8.4.1 Определение основной приведенной погрешности модуля при измерении входных сигналов от термопреобразователей сопротивления.

Собрать схему по рисунку 5.

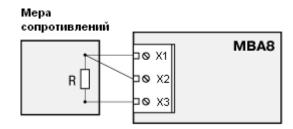


Рисунок 5.

Подключение меры сопротивления производить по трехпроводной схеме согласно РЭ, при этом сопротивления соединительных проводов должны быть равны и не должны превышать 15 Ом.

Установить в среде программирования вход (любой) и выбрать тип датчика – термометр сопротивления и его HCX.

Последовательно устанавливая на мере сопротивлений сопротивления, соответствующие контрольным точкам, зафиксировать по установившимся показаниям измеренную модулем температуру для каждой из контрольных точек.

Рассчитать для каждой проверенной контрольной точки основную приведенную погрешность измерения входных сигналов при работе с термометрами сопротивления по формуле1:

$$\gamma_1 = \frac{A_{\text{HGM}} - A_{\text{HCX}}}{A_{\text{HOPM}}} \times 100\%$$
, (1)

где γ_1 – значение основной приведенной погрешности модуля, %;

 $A_{\mbox{\tiny ИЗМ}}$ — значение измеряемой модулем величины в заданной контрольной точке (°C, мA, мB, B, Oм);

 A_{HCX} – значение измеряемой модулем величины в заданной контрольной точке по HCX первичного преобразователя (${}^{\circ}$ C, мA, мB, B, Oм);

 $A_{\text{норм}}$ — нормирующее значение, равное разности между верхней и нижней границей диапазона измерения (контрольные точки 100 % и 0 %) (°C, мA, мB, B, Ом).

						Лист
					КУВФ.421459.001МП1	Q
Изм.	Лист	№ докум.	Подпись	Дата		

Модуль признается годным, если наибольшее из рассчитанных значений основной приведенной погрешности не превышает значения допускаемой основной приведенной погрешности $\gamma_{\rm II}$.

8.4.2 Определение основной приведенной погрешности модуля при измерении входных сигналов от термоэлектрических преобразователей.

Собрать схему по рисунку 6.

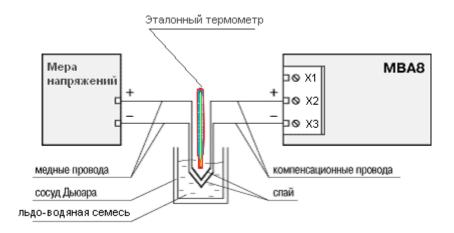


Рисунок 6.

К входу поверяемого модуля подключают термоэлектродные (компенсационные) провода, НСХ которых, соответствуют НСХ преобразования термопары. Концы проводов соединяют с медными проводами и спаи их помещают в термостат со стабильной температурой, измеряемой термометром для введения поправки по ТЭДС на температуру термостата.

Тип компенсационных проводов должен соответствовать типу термоэлектрического преобразователя, по HCX которого будет проводиться поверка.

Температуру свободных концов контролировать с помощью эталонного термометра для введения поправки на температуру свободных концов (при температуре, отличающейся от $0\,^{\circ}\mathrm{C}$ более чем на $0.1\,^{\circ}\mathrm{C}$).

Подать питание на модуль и установить его связь со средой программирования на ΠK .

Установить в среде программирования вход и выбрать тип датчика – термоэлектрический преобразователь и его HCX.

Последовательно устанавливая на мере напряжения напряжения, соответствующие контрольным точкам, зафиксировать по установившимся показаниям измеренную модулем температуру для каждой из контрольных точек.

Рассчитать для каждой проверенной контрольной точки основную приведенную погрешность измерения входных сигналов при работе с термоэлектрическими преобразователями по формуле 2:

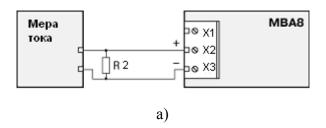
$$\gamma_2 = \frac{A_{MSM} - A_{HCX} - e}{A_{HOPM}} \times 100\%$$
(2)

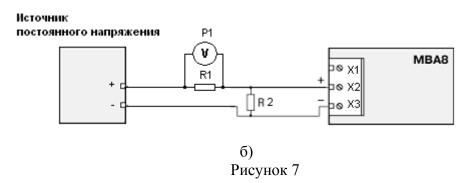
где γ_2 – основная приведённая погрешность прибора в контрольной точке, % ;

 $A_{\mbox{\tiny ИЗМ}}$ — измеренное модулем значение температуры в заданной контрольной точке, $^{
m o}{
m C};$

 $A_{\rm HCX}$ — значение температуры в заданной контрольной точке по HCX термопреобразователя, ${}^{\rm o}{\rm C}$;

						Лист
					КУВФ.421459.001МП1	10
Изм.	Лист	№ докум.	Подпись	Дата		10


 $A_{\text{норм}}$ – нормирующее значение, равное разности максимальной и минимальной температур диапазона измеряемых температур модулем, °C;


e — поправка на температуру свободных концов холодных спаев компенсационных проводов, находящихся в термостате, ${}^{\rm o}{\rm C}$.

Модуль признается годным, если наибольшее из рассчитанных значений основной приведенной погрешности не превышает γ_{π} .

8.4.3 Определение основной приведенной погрешности модуля при работе с унифицированным сигналом постоянного тока.

Собрать схему по рисунку 7.

- а) при использовании в качестве эталона калибратора постоянного тока.
- б) при использовании в качестве эталона источника питания и универсального вольтметра.
- R1, R2 сопротивление 100 Ом (магазин сопротивлений или катушка электрического сопротивления P331);
 - Р1 вольтметр универсальный цифровой.

Подать питание на модуль и установить его связь со средой программирования на ПК.

С помощью среды программирования настроить входы модуля для работы с входными сигналами постоянного тока.

Задать нижний предел показаний аналоговых входов равным нижней границе диапазона измеряемого сигнала и задать верхний предел показаний аналоговых входов равным верхней границе диапазона измеряемого сигнала.

При определении погрешности по схеме рисунок 2a) к входу поверяемого канала модульа вместо первичного преобразователя подключить калибратор тока.

Последовательно устанавливая на выходе калибратора токи, соответствующие значениям входного сигнала в контрольных точках, зафиксировать установившиеся значения для каждой из этих точек.

При определении погрешности по схеме рисунок 2б) на источнике постоянного напряжения увеличивают напряжение до достижения на поверяемом модулье значения входного сигнала равного значениям входного сигнала в контрольных точках.

						Лист
					КУВФ.421459.001МП1	11
Изм.	Лист	№ докум.	Подпись	Дата		11

Входной ток определяют измерением падения напряжения на сопротивлении R1 при помощи цифрового вольтметра и рассчитывают по формуле 3:

$$I = \frac{U}{R} \,, \tag{3}$$

где I – значение входного тока, мА;

U – напряжение по показаниям цифрового вольтметра, мВ;

R – сопротивление меры электрического сопротивления R1, Ом.

Рассчитать основную приведенную погрешность по формуле 1.

Модуль признается годным, если наибольшее из рассчитанных значений основной приведенной погрешности не превышает $\gamma_{\rm II}$.

8.4.4 Определение основной приведенной погрешности модуля при работе с унифицированным сигналом постоянного напряжения.

Собрать схему по рисунку 8.

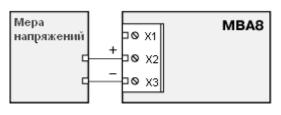


Рисунок 8

С помощью среды программирования настроить входы модуля для работы с входными сигналами постоянного напряжения.

Задать нижний предел показаний аналоговых входов равным нижней границе диапазона измеряемого сигнала и задать верхний предел показаний аналоговых входов равным верхней границе диапазона измеряемого сигнала.

Последовательно устанавливая на выходе источника постоянного напряжения напряжения, соответствующие значениям входного сигнала в контрольных точках, зафиксировать установившиеся значения для каждой из этих точек;

Рассчитать основную приведенную погрешность по формуле 1.

Модуль признается годным, если наибольшее из рассчитанных значений основной приведенной погрешности не превышает $\gamma_{\rm II}$.

Изм	Пист	№ локум	Полпись	Лата

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки оформляются протоколом по форме, установленной метрологической службой, проводящей поверку.
- 9.2 Положительные результаты первичной поверки оформляются записью в паспорте с нанесением оттиска поверительного клейма.
- 9.3 При положительном результате периодической поверки выдается свидетельства о поверке в соответствии с ПР 50.2.006.
 - 9.4 При отрицательных результатах поверки прибора к эксплуатации не допускается, свидетельство о предыдущей поверке аннулируется и выдается извещение о непригодности

Изм.	Лист	№ докум.	Подпись	Дата