УТВЕРЖДАЮ

Руководитель ИЦ ФГУД "ВНИИМС"

В.Н.Яншин

17 " Aprelpene 2014 r.

Хромато-масс-спектрометры жидкостные LCMS-8050

Методика поверки

Настоящая методика распространяется на хромато-масс-спектрометры жидкостные LCMS-8050 фирмы "Shimadzu Corporation", Япония, фирмы "Shimadzu Corporation", США, (далее – хрома-масс-спектрометры) и устанавливает методику их первичной и периодической поверок.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки выполняют операции, указанные в таблице 1.

Наименование операции	Номер пункта методики	Обязательность проведения операции при	
		выпуске из производства и из ремонта	периодической поверке
Внешний осмотр	4.1	Да	Да
Опробование: — определение чувствительности (отно- шения сигнал/шум)	4.2 4.2.1	Да	Да ¹⁾
Определение метрологических характеристик: – определение относительного среднего		Да	Да ¹⁾
квадратического отклонения выходного сигнала (площади пика)	4.3.1		
- определение относительного изменения выходного сигнала (площади пика) за 8 ч непрерывной работы	4.3.2	Да	Да ¹⁾
- определение показателей точности результатов измерений	4.3.3	Нет	Да ²⁾

¹⁾ При отсутствии НД на методики измерений (МИ), утвержденной в установленном порядке по ГОСТ Р 8.563-09.

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки применяют следующие средства:
- резерпин, ФС № 423267-96;
- ацетонитрил для жидкостной хроматографии, ТУ 6-09-14-2167-84,
- вода для лабораторного анализа (бидистиллированная), ГОСТ Р 52501-2005;
- азот газообразный очищенный, высший сорт, ГОСТ 9293-74;
- колонка для высокоэффективной жидкостной хроматографии (ВЭЖХ), применимая для варианта обращеннофазовой ВЭЖХ, например, Shim-pack VP-ODS (150 мм х 2,0 мм, средний размер частиц 5 мкм) или Shim-pack XR-ODSII (50 мм х 2,0 мм);
 - термометр типа ТЛ4 № 2 по ГОСТ 215-73;
 - психрометр типа IIГ-1БМ по ГОСТ 6353-85;
 - барометр-анероид БАММ-1 по ТУ 25-04-1618-72.

 $^{^{2)}}$ При наличии НД на МИ.

Допускается применять другие средства поверки, технические и метрологические характеристики которых соответствуют указанным выше.

3 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

3.1 При проведении поверки соблюдают следующие условия:

– температура окружающего воздуха, °С	20 ± 5
– относительная влажность, °С	от 30 до 80
– атмосферное давление, кПа	$101,3 \pm 4$
 напряжение питания, В 	230 ± 6
 частота напряжения питания, Гц 	50 ± 1

- 3.2 Подготовительные работы выполняют в соответствии с руководством по эксплуатации хроматографа.
- 3.3 Перед проведением поверки готовят контрольные растворы (методика приготовление контрольных растворов приведена в приложении A).

4 ПРОВЕДЕНИЕ ПОВЕРКИ

4.1 Внешний осмотр

При внешнем осмотре устанавливают:

- соответствие комплектности хроматографа паспортным данным;
- четкость маркировки;
- исправность механизмов и крепежных деталей;
- отсутствие внешних повреждений, влияющих на работоспособность хроматомасс-спектрометров.

4.2 Опробование

При опробовании определяют отношение сигнал/шум. При определении отношение сигнал/шум пробу вводят через капилляр (материал PEEK) длиной (30-50) см и внутренним диаметром 0,13 мм, подключенный от масс-спектрометра непосредственно к автодозатору SIL или ручному инжектору.

4.2.1 Отношение сигнал/шум определяют с использованием контрольного раствора и при условиях, указанных в таблице 2.

T_{a}	б	пі	411	я	2
1 4	Л.	JIF	ш	u	_

1 аолица 2	T
Режим	Электроспрей, MRM, положи- тельная ионизация
Элюент	вода/ацетонитрил с объемным соотношением 30/70
Контрольный раствор	резерпин в ацетонитриле
Массовая концентрация контрольного вещества, мг/дм ³	0,001
Объем пробы контрольного раствора, мкл	1
Скорость потока элюента, см ³ /мин	0,4
Масса, а.е.м	609,3>195,0
Температура блока десольватации (DL), °С	250
Температура интерфейса, °С	300

Режим	Электроспрей, MRM, положи- тельная ионизация
Температура блока нагревателя, °С	400
Расход газа-распылителя, дм ³ /мин	3
Расход осушающего газа, дм ³ /мин	10

Вводят пробу контрольного вещества. Находят значение отношения сигнал/шум (S/N) для пика со значением m/z по таблице 2, используя программное обеспечение LabSolution LCMC.

Значение S/N должно быть не менее значений, приведенных в таблице 3.

Таблица 3

таолица э	r
Чувствительность (отношение сигнал/шум)	
- в режиме "электроспрей", положительная ионизации	6000:1
при дозировании 1пг резерпина	

- 4.3 Определение метрологических характеристик
- 4.3.1 Определение относительного среднего квадратического отклонения (СКО) выходного сигнала
- 4.3.1.1 Контрольный раствор (табл. 4.) вводят в хромато-масс-спектрометр не менее 6 раз, измеряют значения выходного сигнала (площади пика) и вычисляют его среднее арифметическое значение (\overline{X}).

Таблица 4 Электроспрей, MRM, Режим положительная ионизация вода/ацетонитрил Элюент с объемным соотношением 30/70 резерпин в ацетонитриле Контрольный раствор Массовая концентрация контрольного вещества, 0,001 $M\Gamma/дM^3$ 5 Объем пробы контрольного раствора, мкл Shim -pack XR-ODSII Хроматографическая колонка (длина х внутренний диаметр) $(50 \text{ MM} \times 2.0 \text{ MM})$ Скорость потока элюента, см³/мин 0,4 35 Давление в насосе, МРа 609.30 > 195.00Масса, а.е.м 250 Температура DL, °C 300 Температура интерфейса, °С 400 Температура блока нагревателя, °С 3 Расход газа-распылителя, дм³/мин 10 Расход осущающего газа, дм³/мин

4.3.1.2 Относительное среднее квадратическое отклонение выходного сигнала (площади пика) рассчитывают по формуле

$$\sigma_{X} = \frac{100}{\overline{X}} \cdot \sqrt{\frac{\sum_{i} (X_{i} - \overline{X})^{2}}{n-1}},$$

где X_i – i-ое значение выходного сигнала (площади пика).

Значение относительного среднего квадратического отклонения выходного сигнала не должны превышать 5 %.

4.3.2 Определение относительного изменения выходного сигнала (площади пика) за 8 часов непрерывной работы.

Условия измерения аналогичны, описанным в разделе 4.3.1. Проводят операции, описанные в 4.3.1. Через 8 часов непрерывной работы повторяют измерения по п.4.3.1.

Относительное изменение параметров выходного сигнала за 8 часов непрерывной работы рассчитывают по формуле

$$\delta = \frac{\left|\overline{X}_{t} - \overline{X}\right|}{\overline{X}} \cdot 100,$$

где $\overline{\mathbf{X}}_t$ – среднее арифметическое значение выходного сигнала через 8 часов непрерывной работы.

Значение относительного изменения выходного сигнала (площади пика) не должно превышать \pm 10 %.

4.3.3 При проведении периодической поверки хромато-масс-спектрометров, эксплуатируемых по НД на МИ, отвечающим требованиям ГОСТ 8.563-09, проверяют показатели точности результатов измерений в соответствии с процедурами и нормативами контроля, регламентированными в НД на МИ.

5 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 5.1 Результаты поверки хромато-масс-спектрометров заносят в протокол.
- 5.2 Положительные результаты поверки хромато-масс-спектрометров оформляют выдачей свидетельства в соответствии с ПР 50.2.006-94.
- 5.3 Хромато-масс-спектрометры, не удовлетворяющие требованиям настоящих рекомендаций, к эксплуатации не допускаются. Хромато-масс-спектрометры изымают из обращения. Свидетельство о поверке изымают и выдают извещение о непригодности с указанием причин в соответствии с ПР 50.2.006-94.
 - 5.4 После ремонта хромато-масс-спектрометр подвергают поверке.

Начальник сектора ФГУП "ВНИИМС"

О.Л. Рутенберг

ПРИЛОЖЕНИЕ А

МЕТОДИКА ПРИГОТОВЛЕНИЯ КОНТРОЛЬНЫХ РАСТВОРОВ

Методика предназначена для приготовления контрольных растворов резерпина.

1 СРЕДСТВА ИЗМЕРЕНИЙ, ПОСУДА, РЕАКТИВЫ

- 1.1 Резерпин, ФС № 423267-96 или резерпин с содержанием основного вещества не менее 99,0, CAS 50-55-5, номер 83580 по каталогу Sigma-Aldrich
- 1.2 Весы лабораторные по ГОСТ OIML R 76-1-2011, с наибольшим пределом взвешивания 200 г.
 - 1.3 Мера массы (гири), 2-01 класс точности, ГОСТ 7328-2001.
 - 1.4 Колбы мерные наливные 2–100–2, 2–1000–2 по ГОСТ 1770-74.
 - 1.5 Пипетки с одной отметкой 1-2-1, 1-2-25 по ГОСТ 29169-91
 - 1.6 Стаканы В-1-50ТС по ГОСТ 25336-82.
 - 1.7 Вода для лабораторного анализа, ГОСТ Р 52501-2005.
 - 1.8 Дистиллированная вода по ГОСТ 6709-72.

2 ПРОЦЕДУРА ПРИГОТОВЛЕНИЯ

- 2.1. Приготовление исходного раствора резерпина с массовой концентрацией 10 мг/ $\mathrm{дm}^3$
- 2.1.1 Взвешивают в стакане 10,0 мг резерпина, добавляют 25 см³ ацетонитрила, перемешивают. Полученный раствор переносят в мерную колбу вместимостью 1000 см³. Ополаскивают стакан ацетонитрилом, раствор переносят в мерную колбу, доводят до метки ацетонитрилом, перемешивают.
 - 2.1.2 Приготовление раствора резерпина с массовой концентрацией $0,1\,$ мг/ дм 3
- $1~{\rm cm}^3$ раствора, приготовленного по п.2.1.1, переносят в мерную колбу вместимостью $100~{\rm cm}^3$ и доводят до метки ацетонитрилом.
- 2.1.3 Приготовление контрольного раствора резерпина с массовой концентрацией $0.001~\mathrm{mr/\, дm}^3$
- $1~{\rm cm}^3$ раствора, приготовленного по п.2.1.2, переносят в мерную колбу вместимостью $100~{\rm cm}^3$ и доводят до метки ацетонитрилом.

Погрешность приготовления контрольного раствора ± 5 %.