ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Красноярском крае» (ФБУ «Красноярский ЦСМ»)

УТВЕРЖДАЮ:
Руководитель ГЦИ СИ
ФБУ-жерасноярский ЦСМ»

неголиция (С. Л. Шпирко / 2015 г.

Система автоматизированная информационно—измерительная коммерческого учета электроэнергии ПС 220/110/10 кВ «Узловая»

Методика поверки

18-18/007 MT 1.p. 63671-16

Красноярск

2015

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1 Настоящая методика поверки распространяется на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ПС 220/110/10 кВ «Узловая».
- 1.2 Поверке подлежит АИИС КУЭ ПС 220/110/10 кВ «Узловая» покомпонентным (поэлементным) способом с учетом положений раздела 8 ГОСТ Р 8.596. Состав АИИС КУЭ приведен в приложении А.

Первичную поверку системы выполняют после проведения испытаний АИИС КУЭ в целях утверждения типа перед вводом в эксплуатацию.

Периодическую поверку системы выполняют в процессе эксплуатации АИИС КУЭ с интервалом между поверками (ИМП) 4 года.

- 1.3 Измерительные компоненты системы (ИКС) поверяют с интервалом, установленным при утверждении их типа. Если очередной срок поверки ИКС наступает до очередного срока поверки АИИС КУЭ, поверяется только этот компонент и поверка АИИС КУЭ не проводится. После поверки и восстановления ИКС выполняется проверка ИКС в той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой измерительного компонента, не нарушили метрологических свойств ИК (схема соединения, корректировка часов и т.п.).
- 1.4 Внеочередную поверку АИИС КУЭ проводят после ремонта системы, замены ее измерительных компонентов, аварий в энергосистеме, если эти события могли повлиять на метрологические характеристики ИК. Допускается подвергать поверке только те ИК, которые подверглись указанным выше воздействиям, при условии, что собственник АИИС КУЭ подтвердит официальным заключением, что остальные ИК этим воздействиям не подвергались. В этом случае может быть оформлено дополнение к основному свидетельству о поверке системы с соответствующей отметкой в основном свидетельстве.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использованы ссылки на следующие нормативные документы:

Приказ Минпромторга	Об утверждении Порядка проведения поверки средств измерений,				
России от 02.07.2015	требования к знаку поверки и содержанию свидетельства о поверке				
№ 1815	, i i i i i i i i i i i i i i i i i i i				
ПР 50.2.012-94	«ГСИ. Порядок аттестации поверителей средств измерений»				
P 50.2.077-2014	«ГСИ. Испытания средств измерений в целях утверждения типа				
	Проверка защиты программного обеспечения»				
ΓΟCT P 8.596-2002	«ГСИ. Метрологическое обеспечение измерительных систем.				
	Основные положения»				
ΓΟCT 12.2.007.0-75	«ССБТ. Изделия электротехнические. Общие требования				
	безопасности»				
ГОСТ 12.2.007.3-75	«ССБТ. Электротехнические устройства на напряжение свыше				
	1000 В. Требования безопасности».				
ПОТ РМ-016 (РД	«Межотраслевые правила по охране труда (правила безопасности)				
153-34.0-03.150)	при эксплуатации электроустановок»				
,	1				

3 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

3.1 В настоящей методике использованы следующие обозначения:

 $U_{{}^{\scriptscriptstyle{\mathsf{HOM}}}}$ - номинальное напряжение;

 U_{x} - падение напряжения в проводной линии связи;

 $S_{_{\!\scriptscriptstyle HOM}}$ - номинальная мощность.

3.2 В настоящей методике использованы следующие сокращения:

АИИС КУЭ - автоматизированная информационно-измерительная система коммерческого

учета электроэнергии;

APM

- автоматизированное рабочее место;

БД

- база данных;

ГТЭС

- газотурбинная электростанция;

ИВК

- информационно-вычислительный комплекс;

ИВКЭ

- информационно-вычислительный комплекс электроустановки;

иик

- информационно-измерительный комплекс;

ИК

- измерительный канал:

ИКС

- измерительный компонент системы;

ИИС

- информационно-измерительная система;

ИМП

- интервал между поверками;

КУЭиМ

- коммерческий учет электроэнергии и мощности;

MX

- метрологическая характеристика;

ПО

- программное обеспечение;

СИ

- средство измерений;

TH

- трансформатор напряжения;

TT

- трансформатор тока;

УСПД

- устройство сбора и передачи данных;

COEB

- система обеспечения единого времени.

4 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки проводят операции, указанные в таблице 1.

Таблица 1 – Операции поверки

No		Номер пунк-	Проведение операции при поверк			
п/п	Наименование операции	та методики	первичной	периодиче-	внеоче-	
		поверки	- скои		редной	
1	Внешний осмотр	10.1	Да	Да	Да	
2	Проверка измерительных компонентов системы	10.2	Да	Нет	Нет	
3	Проверка счетчиков электроэнергии	10.3	Да	Да	Да	
4	Проверка УСПД	10.4	Да	Да	Да	
5	Подтверждение соответствия ПО СИ	10.5	Да	Да	Да	
6	Проверка функционирования сервера АИИС КУЭ	10.6	Да	Да	Да	
7	Проверка нагрузки вторичных цепей из- мерительных трансформаторов напряже- ния	10.7	Да	Нет	Да	
8	Проверка нагрузки вторичных цепей из- мерительных трансформаторов тока	10.8	Да	Нет	Да	
	Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком	10.9	Да	Нет	Да	
10	Проверка погрешности часов ИКС	10.10	Нет	Да	Да	
	Проверка отсутствия ошибок информаци- онного обмена	10.11	Нет	Да	Да	

5 СРЕДСТВА ПОВЕРКИ

5.1 При проведении поверки должны использоваться средства поверки, указанные в таблице 2.

Таблица 2 – Содержание и объем испытаний

№ п/п	Наименование средства поверки
1	Переносной компьютер с ПО: - «МеterCat Альфа A1800»,
	– «Конфигуратор RTU-325Т» и– «АльфаЦЕНТР» АС РЕ
2	УСВ-1 с GPS-приемником
2	Термометр лабораторный с пределом измерений от минус 40 до $+50$ °C, абсолютной погрешность не более $\pm~1$ °C
3	Измеритель параметров электробезопасности электроустановки MPI-505. Диапазон измерения от 0,13 до 1999 Ом.

- 5.2 Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.
- 5.3 Применяемые средства измерений должны иметь действующие свидетельства о поверке.

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 6.1 К проведению поверки АИИС КУЭ допускают поверителей, аттестованных в соответствии с ПР 50.2.012, изучивших настоящую рекомендацию и руководство по эксплуатации на АИИС КУЭ, имеющих стаж работы по данному виду измерений не менее 1 года.
- 6.2 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ "Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации" и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже III.
- 6.3 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих и состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ "Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации" и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV.
- 6.4 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ "Методика выполнения измерений потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации", и, прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV.

7 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

7.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0, ГОСТ 12.2.007.3, «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустано-

вок потребителей», «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок» ПОТ РМ-016 (РД 153-34.0-03.150), а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.

7.2 Эталонные средства измерений, вспомогательные средства поверки и оборудование должны соответствовать требованиям ГОСТ 12.2.003, ГОСТ 12.2.007.3.

8 УСЛОВИЯ ПОВЕРКИ

Условия поверки АИИС КУЭ должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.

9 ПОДГОТОВКА К ПОВЕРКЕ

- 9.1 Для проведения поверки представляют следующую документацию:
- руководство по эксплуатации АИИС КУЭ;
- описание типа АИИС КУЭ;
- свидетельства о поверке измерительных компонентов, входящих в ИК, и свидетельство о предыдущей поверке системы (при периодической и внеочередной поверке);
 - паспорта-протоколы на информационно-измерительные комплексы (ИИК);
- рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за интервал между поверками (только при периодической поверке).
 - 9.2 Перед проведением поверки выполняют следующие подготовительные работы:
- проводят организационно-технические мероприятия по доступу поверителей и персонала энергообъектов к местам установки измерительных трансформаторов, счетчиков электроэнергии, УСПД; по размещению эталонов, отключению в необходимых случаях поверяемых средств измерений от штатной схемы;
- проводят организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;
- средства поверки выдерживают в условиях и в течение времени, установленных в НД на средства поверки;
- все средства измерений, которые подлежат заземлению, должны быть надежно заземлены, подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

10 ПРОВЕДЕНИЕ ПОВЕРКИ

10.1 Внешний осмотр

- 10.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений СИ, наличие поверительных пломб и клейм.
- 10.1.2 Проверяют размещение измерительных компонентов, правильность схем подключения трансформаторов тока и напряжения к счетчикам электрической энергии; правильность прокладки проводных линий по проектной документации на ИК АИИС КУЭ.
- 10.1.3 Проверяют соответствие типов и заводских номеров фактически использованных измерительных компонентов типам и заводским номерам, указанным в паспорте формуляре на ИК АИИС КУЭ.
- 10.1.4 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

10.2 Проверка измерительных компонентов ИК

Проверяют наличие свидетельств о поверке и срок их действия для всех СИ ИК АИИС КУЭ: измерительных трансформаторов тока и напряжения, счетчиков электрической энергии. При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств, срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после поверки этих измерительных компонентов.

10.3 Проверка счетчиков электрической энергии

- 10.3.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций па счетчике и испытательной коробке. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения счетчика к цепям тока и напряжения, в частности, правильность чередования фаз. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения счетчиков к цепям тока и напряжения (соответствие схем подключения схемам, приведенным в паспорте на счетчик). Проверяют последовательность чередования фаз с помощью вольтамперфазометра. При проверке последовательности чередования фаз действуют в соответствии с указаниями, изложенными в руководстве по его эксплуатации.
- 10.3.2 Проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.
- 10.3.3 Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Преобразователь подключают к любому последовательному порту переносного компьютера. Опрашивают счетчик по установленному соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком.
- 10.3.4 Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптопорт.

10.4 Проверка УСПД

- 10.4.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на УСПД. При отсутствии или нарушений пломб проверяют правильность подсоединения УСПД.
- 10.4.2 Проверяют правильность функционирования УСПД в соответствии с его эксплуатационной документацией с помощью тестового программного обеспечения. Проверка считается успешной, если все подсоединенные к УСПД счетчики опрошены и нет сообщений об ошибках.
- 10.4.3 Проверяют правильность значений коэффициентов трансформации измерительных трансформаторов, хранящихся в памяти УСПД.

10.5 Подтверждение соответствия ПО СИ

- 10.5.1 Проверку соответствия ПО проводят по Р 50.2.077.
- 10.5.2 После запуска ПО «АльфаЦентр» на экране монитора должна высветиться версия, приведенная в табл. 3.
- 10.5.3 Запускают программу хэширования файлов «MD5.EXE» и открывают каталог наименования модулей: «С:\alfacentr\exe\». Выделяют файлы, наименование которых приведено в табл. 3. и просчитывают хэш-коды. Проверку считают успешной, если хэш-коды соответствуют данным в табл. 3.

Таблица 3 — Идентификационные данные метрологически значимой части ПО

Идентификационные данные (признаки)	Значение
Наименование программного обеспечения	СПО АИИС КУЭ ЕНЭС «Метроскоп»
Идентификационное наименование ПО	DataServer.exe + DataServer USPD.exe
Номер версии (идентификационный номер) ПО	1.00
Цифровой идентификатор ПО (алгоритм вычисления MD5)	D233ED6393702747769A45DE8E67B57E
Наименование программного обеспечения	ПО «АльфаЦЕНТР»
Идентификационное наименование ПО	Amrserver.exe
Номер версии (идентификационный номер) ПО	11.07.01.01
Цифровой идентификатор ПО (алгоритм вычисления MD5)	1907cf524865a1d0c0042f5eeaf4f866

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Amrc.exe
Номер версии (идентификационный номер) ПО	11.07.01.01
Цифровой идентификатор ПО (алгоритм вы- числения MD5)	95e1a46241f32666dd83bab69af844c0
Идентификационное наименование ПО	Amra.exe
Номер версии (идентификационный номер) ПО	11.07.01.01
Цифровой идентификатор ПО (алгоритм вы- числения MD5)	1d217646a8b3669edaebb47ba5bc410b
Идентификационное наименование ПО	Cdbora2.dll
Номер версии (идентификационный номер) ПО	11.07.01.01
Цифровой идентификатор ПО (алгоритм вы- числения MD5)	a2f6e17ef251d05b6db50ebfb3d2931a
Идентификационное наименование ПО	Encryptdll.dll
Номер версии (идентификационный номер) ПО	11.07.01.01
Цифровой идентификатор ПО (алгоритм вы- числения MD5)	0939ce05295fbcbbba400eeae8d0572c
Идентификационное наименование ПО	Alphamess.dll
Номер версии (идентификационный номер) ПО	11.07.01.01
Цифровой идентификатор ПО (алгоритм вы- числения MD5)	b8c331abb5e34444170eee9317d635cd

10.6 Проверка функционирования сервера АИИС КУЭ

- 10.6.1 Проводят опрос текущих показаний всех счетчиков электроэнергии.
- 10.6.2 Проверяют глубину хранения измерительной информации в центральном сервере АИИС КУЭ.
- 10.6.3 Проверяют защиту программного обеспечения на ЭВМ АИИС КУЭ от несанкционированного доступа. Для этого запускают на выполнение программу сбора данных и в поле «пароль» вводят неправильный код. Проверку считают успешной, если при вводе неправильного пароля программа не разрешает выполнять работу.

10.7 Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения

- 10.7.1 Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи измерительных трансформаторов напряжения (ТН) со счетчиком. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения первичных и вторичных обмоток ТН. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения первичных и вторичных обмоток ТН.
- $10.7.2~\mathrm{При}$ проверке мощности нагрузки вторичных цепей ТН необходимо убедиться, что отклонение вторичного напряжения при нагруженной вторичной обмотке составляет не более 10% от номинального напряжения ($U_{\text{ном}}$).

Измеряют мощность нагрузки ТН, которая должна находиться в диапазоне $(0,25\div1,0)$ от номинальной $(S_{\text{ном}})$. Измерение мощности нагрузки вторичных цепей ТН проводят в соответствии с аттестованной в установленном порядке методикой выполнения измерений.

Примечания.

1 Допускается измерения мощности нагрузки вторичных цепей ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный ИК в течение истекающего интервала между поверками ИК. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия.

2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам измерительных трансформаторов.

10.8 Проверка нагрузки вторичных цепей измерительных трансформаторов тока

- 10.8.1 Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения вторичных обмоток трансформаторов тока (ТТ). При отсутствии таких документов проверяют правильность подключения вторичных обмоток ТТ.
- 10.8.2 Измеряют мощность нагрузки вторичных цепей TT, которая должна находиться в диапазоне (0,25-1,0) $S_{\text{ном}}$.

Измерение тока и вторичной нагрузки TT проводят в соответствии с аттестованной в установленном порядке методикой выполнения измерений.

Примечания.

- 1 Допускается измерения мощности нагрузки вторичных цепей ТТ не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный ИК в течение истекающего интервала между поверками ИК. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия.
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам ТТ.

10.9 Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком

Измеряют падение напряжения (U_n) в проводной линии связи для каждой фазы по утвержденному документу «Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации». Падение напряжения не должно превышать 0,25% от номинального значения на вторичной обмотке TH.

Примечания.

- 1 Допускается измерение падения напряжения в линии соединения счетчика с ТН не проводить, если такие измерения проводились при составлении паспортов протоколов на данный ИК в течение истекающего интервала между поверками ИК. Результаты проверки считают положительными, если паспорт- протокол подтверждает выполнение указанного выше требования.
- 2 Допускается падение напряжения в линии соединения счетчика с ТН определять расчетным путем, если известны параметры проводной линии связи и сила электрического тока, протекающего через линию связи.

10.10 Проверка погрешности часов ИКС АИИС КУЭ

Погрешность часов измерительных компонентов АИИС КУЭ проверяют непосредственным сличением часов счетчиков и УСПД с показаниями GPS-приемника СОЕВ. Время с часов счетчиков считывают при помощи переносного компьютера с оптопортом и ПО «Альфа-ЦЕНТР». Время с часов УСПД считывают при помощи переносного компьютера с оптопортом и ПО «Метроскоп».

АИИС КУЭ считают выдержавшим испытание по п. 10.10, если расхождение часов счетчиков, УСПД и ИВК относительно часов СОЕВ не превышают ± 5 с.

10.11 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального сервера.

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

10.11.1 На центральном компьютере ИВК системы распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30-ти минутным интервалом за полные предшествующие дню проверки сутки по всем ИК. Проверяют наличие данных, соответст-

вующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента системы.

- 10.11.2 Распечатывают журнал событий счетчиков и ИВК и отмечают моменты нарушения связи с СИ. Проверяют сохранность измерительной информации в памяти сервера БД на тех интервалах времени, в которые была нарушена связь.
- 10.11.3 Распечатывают на центральном компьютере ИВК профиль нагрузки за полные сутки, предшествующие дню поверки. Используя переносной компьютер, считывают через оптопорт профиль нагрузки за те же сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящейся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и сервере БД не должно превышать двух единиц младшего разряда учтенного значения.
- 10.11.4 Рекомендуется вместе с проверкой по п. 10.3 сличать показания счетчика по активной и реактивной электрической энергии строго в конце получаса (часа) и сравнивать с данными, зарегистрированными в сервере БД системы для того же момента времени. Для этого визуально или с помощью переносного компьютера через оптопорт считывают показания счетчика по активной и реактивной электрической энергии и сравнивают эти данные (с учетом коэффициентов трансформации измерительных трансформаторов), с показаниями зарегистрированными в сервере БД системы. Расхождение не должно превышать две единицы младшего разряда.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 11.1 На основании положительных результатов по пунктам раздела 8 выписывают свидетельство о поверке АИИС КУЭ в соответствии с Приказом Минпромторга России от 02.07.2015 № 1815. В приложении к свидетельству указывают перечень СИ с указанием заводских номеров.
- 11.2 При отрицательных результатах поверки АИИС КУЭ признаются негодными к дальнейшей эксплуатации и на них выдают извещение о непригодности в соответствии с При-казом Минпромторга России от 02.07.2015 № 1815 с указанием причин.

Начальник отдела СНТР

Инженер 2 категории отдела СНТР

/Н.М. Лясковский/

/ TP PERKOR/

Приложение А

(справочное)

Состав 1-го и 2-го уровней измерительных каналов АИИС КУЭ

А.1 Состав ИК АИИС КУЭ приведен в табл. А.1.

Таблица А.1 – Состав ИК 1-го и 2-го уровней АИИС КУЭ ПС 220/110/10 кВ «Узловая»

		Состав 1-го и 2-го уровней ИК АИИС КУЭ				Вид
№ ИК	Наименование	Счетчик	Трансформатор			электро-
	присоединения	электроэнергии	тока (ТТ)	напряжения (ТН)	УСПД	энергии
		A1802RALQ-	·			•
		P4GB-DW-4, 1	$TB-110/50$, 3 ед.; $K_T = 0.5$;			İ
5	B 1AT/110	ед., К _Т =0,2S/0,5;	$K_{\rm T} = 0.5;$ $K_{\rm I} = 1500/5;$	3 ед., $K_T = 0.5$;		
		ед., к _т =0,25/0,3, № ГР 31857-11	, ,	$ K_U$ =110000:√3/100:√3 № ΓP 40089-08	1	
-		A1802RALQ-	№ ГР 3190-72	·	-	
	B 2AT/110	P4GB-DW-4, 1	$TB-110/50$, 3 ед.; $K_T = 0.5$;	VPU-123 УХЛ 1,	1	
6		ед., K _T =0,2S/0,5;	$K_{\rm I} = 0.5$; $K_{\rm I} = 1500/5$;	3 ед., $K_T = 0.5$; $K_U = 110000: \sqrt{3}/100: \sqrt{3}$		
		ед., R _T =0,25/0,3, № ГР 31857-11	N₁ - 1300/3; N₂ ΓΡ 3190-72	N _U =110000: √3/100: √3 N ₂ ΓP 40089-08		
-	ВЛ 110 кВ Же-	A1802RALQ-	ТВГ-110, 3 ед.;		-	
	лезногорская	P4GB-DW-4, 1	$K_T = 0.5S;$	VPU-123 УХЛ 1,		
7	ТЭЦ – Узловая І	ед., $K_T=0.2S/0.5$;	$K_T = 0.35;$ $K_I = 600/5;$	3 ед., $K_T = 0.5$;		
	цепь (С-293)	№ ΓР 31857-11	N₁ - 600/3; № ΓР 22440-07	$K_U=110000:\sqrt{3}/100:\sqrt{3}$		
	ВЛ 110 кВ Же-	A1802RALQ-	ТВГ-110, 3 ед.;	№ ГР 40089-08 VPU-123 УХЛ 1,	-	
	лезногорская	P4GB-DW-4, 1	$K_{\rm T} = 0.5S;$	· · · · · · · · · · · · · · · · · · ·		
8	ТЭЦ – Узловая	ед., K _T =0,2S/0,5;	$K_{\rm T} = 0.35$, $K_{\rm I} = 600/5$;	3 ед., $K_T = 0.5$; $K_U = 110000: \sqrt{3}/100: \sqrt{3}$		
	II цепь (С-294)	№ ΓР 31857-11	N₁ - 000/3, № ΓР 22440-02	Nº LP 40089-08		
	П цень (С-294)	A1802RALQ-	ТВ 110-1, 3 ед.;	VPU-123 УХЛ 1,		
	ВЛ 110 кВ Узло-	P4GB-DW-4, 1	$K_T = 1;$,		
9	вая - Автоград I	ед., K _T =0,2S/0,5;	$K_{\rm T} - 1$; $K_{\rm I} = 1000/5$;	3 ед., $K_T = 0.5$; $K_U=110000:\sqrt{3}/100:\sqrt{3}$		
	цепь (С-283)	№ ΓР 31857-11	N₂ ΓP 3189-72			
		A1802RALQ-		№ ГР 40089-08		
	ВЛ 110 кВ Узло-	P4GB-DW-4, 1	ТВ 110-1, 3 ед.;	VPU-123 УХЛ 1,		
10	вая - Автоград II	ед., K _T =0,2S/0,5;	$K_T = 1;$	3 ед., $K_T = 0.5$;		Активная
	цепь (С-284)	№ ГР 31857-11	$K_{\rm I} = 1000/5;$ $N_{\rm P} \Gamma P 3189-72$	$K_U=110000:\sqrt{3}/100:\sqrt{3}$	RTU-325T	и реак-
	ВЛ 110 кВ Узло-	JV211 31037-11	Nº1 F 3109-72	№ ГР 40089-08	№ ГР	тивная
	вая – КТПБ	A1802RALQ-	ТВ 110-1, 3 ед.;	VDII 100 VVII 1	44626-10	электро-
	Красноярской	P4GB-DW-4, 1		VPU-123 УХЛ 1,		энергия
11	ТЭЦ-4 І цепь с	ед., K _T =0,2S/0,5;	$K_T = 1;$ $K_I = 500/5;$	3 ед., $K_T = 0.5$; $K_U=110000:\sqrt{3}/100:\sqrt{3}$		-
	отпайками (С-	№ ΓP 31857-11				
	287)					
	ВЛ 110 кВ Узло-			*· · · · · · · · · · · · · · · · · · ·		
	вая – КТПБ	A1802RALQ-	ТВ 110-1, 3 ед.;	VPU-123 УХЛ 1,		
	Красноярской	P4GB-DW-4, 1	$K_T = 1;$	$3 \text{ ед., } K_T = 0.5;$		
12	ТЭЦ-4 II цепь с	ед., K _T =0,2S/0,5;	$K_1 = 500/5;$	$K_U = 110000: \sqrt{3}/100: \sqrt{3}$		
	отпайками (С-	№ ΓР 31857-11	N₂ ΓP 3189-72	N ₀ ΓP 40089-08		
	288)	74211 21027-11	Nº 1 F 3109-72	Nº 1 P 40089-08		ļ
	****	A1802RALQ-	ТВ 110-1, 3 ед.;	VPU-123 УХЛ 1,		
	ВЛ 110 кВ Узло-	P4GB-DW-4, 1	$K_T = 1;$	$3 \text{ ед., } K_T = 0,5;$		
13	вая – ГПП-4 I	ед., K _T =0,2S/0,5;	$K_{I} = 500/5;$	$K_U=110000:\sqrt{3}/100:\sqrt{3}$		
	цепь (С-285)	№ ΓР 31857-11	№ ΓР 3189-72	№ ΓР 40089-08		
	-	A1802RALQ-	ТВ 110-1, 3 ед.;	VPU-123 УХЛ 1,		
	ВЛ 110 кВ Узловая – ГПП-4 II цепь (С-286)	P4GB-DW-4, 1	$K_T = 1;$	$3 \text{ ед., } K_T = 0.5;$		
14		ед., K _T =0,2S/0,5;	$K_{I} = 500/5;$	$K_U=110000:\sqrt{3}/100:\sqrt{3}$	İ	
		№ ΓР 31857-11	№ ΓР 3189-72	№ ΓР 40089-08		
	ВЛ 110 кВ Узло-	A1802RALQ-	SB 0,8 ; 3 ед.;	VPU-123 УХЛ 1,		
ļ	вая – НПС Воз-	P4GB-DW-4, 1	SB 0,8 ; 3 ед.; К _Т =0,2;	$3 \text{ ед., } K_T = 0.5;$		
15	несенская І цепь	ед., K _T =0,2S/0,5;	$K_1 = 0.2$; $K_1 = 150/5$;	$K_U=110000:\sqrt{3}/100:\sqrt{3}$		
	(C-291)	№ ΓР 31857-11	N₂ΓP 20951-01	№ ΓР 40089-08		
	(3.271)	VI= 11 J10J/-11	JIEL 1 20731-01	712 T T 40003-00		

1	Наименование присоединения	Состав 1-го и 2-го уровней ИК АИИС КУЭ				Вид
№ ИК		Счетчик	Трансформатор	Трансформатор	УСП П	электро-
	присосдинения	электроэнергии	тока (ТТ)	напряжения (ТН)	УСПД	энергии
	ВЛ 110 кВ Узло-	A1802RALQ-	SB 0,8 ; 3 ед.;	VPU-123 УХЛ 1,		
16	вая – НПС Воз-	P4GB-DW-4, 1	$K_T = 0,2;$	3 ед., $K_T = 0.5$;		
	несенская II цепь	ед., $K_T=0,2S/0,5$;	$K_{\rm I} = 150/5;$	$K_U=110000:\sqrt{3}/100:\sqrt{3}$		
	(C-292)	№ ГР 31857-11	№ΓР 20951-01	№ ГР 40089-08	,	
	ВЛ 110 кВ Узло-	A1802RALQ-	ТВ 110-II, 3 ед.;	VPU-123 УХЛ 1,]	
17	вая – Шумково	P4GB-DW-4, 1	$K_T = 0.5;$	3 ед., $K_T = 0.5$;		ŀ
1 '	30 I цепь с от-	ед., $K_T=0,2S/0,5$;	$K_1 = 1000/5$;	$K_U=110000:\sqrt{3}/100:\sqrt{3}$		
	пайками (С-289)	№ ГР 31857-11	№ ГР 3189-72	№ ГР 40089-08		ĺ
	ВЛ 110 кВ Узло- вая – Город I цепь	A1802RALQ-	SB 0,8 ; 3 ед.;	VPU-123 УХЛ 1,	1	
18		P4GB-DW-4, 1	P4GB-DW-4, 1 $K_T=0.2S$; 3 e.g., $K_T=0.5$;			
10		ед., K _T =0,2S/0,5;	$K_I = 400/5$;	$K_U=110000:\sqrt{3}/100:\sqrt{3}$	DTH 225T	Активная
		№ ГР 31857-11	№ГР 20951-01	№ ГР 40089-08	RTU-325T	и реак-
	ВЛ 110 кВ Узло- вая – Город II цепь	A1802RALQ-	SB 0,8 ; 3 ед.;	VPU-123 УХЛ 1,	№ ГР	тивная
19		P4GB-DW-4, 1	$K_{T}=0,2S;$	3 ед., $K_T = 0.5$;	44626-10	электро-
1		ед., K _T =0,2S/0,5;	$K_1 = 400/5$;	$K_U=110000:\sqrt{3}/100:\sqrt{3}$		энергия
	цспв	№ ГР 31857-11	№ΓР 20951-01	№ ГР 40089-08		
	ВЛ 110 кВ Узло-	A1802RALQ-	ТВ 110-ІІ, 3 ед.;	VPU-123 УХЛ 1,		
20	вая – Шумково-0	P4GB-DW-4, 1	$K_T = 0.5;$	3 ед., $K_T = 0.5$;		
20	II цепь с отпай-	ед., K _T =0,2S/0,5;	$K_I = 1000/5;$	$K_U=110000:\sqrt{3}/100:\sqrt{3}$		
	ками (С-290)	№ ГР 31857-11	№ ГР 3189-72	№ ГР 40089-08		
		A1802RALQ-	ТОЛ-10-І, 3 ед.;	VPU-123 УХЛ 1,		
37	3РУ-10 кВ	P4GB-DW-4, 1	$K_T = 0.5S;$	3 ед., $K_T = 0.5$;		
	яч. 9 Весна	ед., K _T =0,2S/0,5;	$K_{I} = 80/5;$	$K_U=110000:\sqrt{3}/100:\sqrt{3}$		
		№ ГР 31857-11	№ ГР 15128-07	№ ГР 40089-08		