УТВЕРЖДАЮ

Система измерительная автоматизированной системы управления технологическим процессом коксовой батареи № 1 Коксохимического производства АО «ЕВРАЗ ЗСМК»

МЕТОДИКА ПОВЕРКИ

MΠ H282-17

Содержание

1	Общие положения	. 3
2.	Операции поверки	. 3
3	Средства поверки	. 4
4	Требования к квалификации поверителей	. 4
5	Требования безопасности	. 5
6	Условия поверки	. 5
7	Подготовка к поверке	. 5
8	Проведение поверки	. 6
9	Оформление результатов поверки	. 9
П	риложение А	10
П	риложение Б	15
П	риложение В	16
Лı	ист регистрации изменений	17

1. Общие положения

- 1.1 Настоящая методика поверки распространяется на Систему измерительную автоматизированной системы управления технологическим процессом коксовой батареи № 1 Коксохимического производства АО «ЕВРАЗ ЗСМК» (ИС), заводской № Н282, изготовленную Акционерным обществом «Сибирский Тяжпромэлектропроект» и устанавливает методы и средства ее поверок.
- 1.2 Поверке подлежит ИС в соответствии с перечнем измерительных каналов (ИК), приведенным в приложении А.
- 1.3 Первичную поверку ИС выполняют после проведения испытаний с целью утверждения типа. Допускается совмещение операций первичной поверки и операций, выполняемых при испытаниях типа.
- 1.4 Периодическую поверку ИС выполняют в процессе эксплуатации через установленный межповерочный интервал (МПИ).
- 1.5 Внеочередную поверку проводят после ремонта системы, замены её измерительных компонентов. Допускается подвергать поверке только те ИК, которые подвергались ремонту.
- 1.6 Измерительные компоненты ИС (измерительные преобразователи (ИП), программируемый логический контроллер (PLC)) поверяют с МПИ, установленным при утверждении их типа.
- 1.7 Допускается применение ИП аналогичных типов, внесенных в информационный фонд по обеспечению единства измерений РФ с аналогичными техническими и метрологическими характеристиками (МХ).

При замене ИП на преобразователи аналогичных типов, необходимо об этом сделать запись в паспорте ИС п. 6 Особые отметки.

- 1.8 При замене измерительных компонентов на компоненты с отличающимися техническими и МХ, для ИК подвергшихся модернизации, необходимо проведение испытаний с целью внесения изменений в описание типа.
- 1.9 При модернизации ИС путем введения новых ИК и в случае обновления программного обеспечения (ПО) ИС, расширении/модификации его функций, то проводятся испытания с целью внесения изменений в описание типа.
 - 1.10 МПИ ИС 1 год.

2. Операции поверки

Таблица 1 – Операции поверки

		Проведение операций при						
	Номер			внеочередной поверке				
Операции поверки	пункта	первичной поверке	периодической поверке	после замены центрального процессора или модулей ввода	после переустановки ПО или замены компьютера APM			
1	2	3	4	5	6			
1 Внешний осмотр	8.1	+	+	+	-			
2 Поверка измерительных компонентов ИС	8.2	+	+	+	-			

Продолжение таблицы 1

1	2	3	4	5	6
3 Проверка условий эксплуатации ИС	8.3	+	+	_	-
4 Проверка функционирования ИС	8.4	+	+	+	+
5 Проверка идентификационных данных ПО	8.5	+	+	+*	+
6 Определение погрешности хода времени АРМ ИС относительно координированной шкалы времени UTC (SU)	8.6	+	+	-	+
7 Определение времени рассогласования между PLC и APM	8.7	+	+	+*	+

Примечания:

3 Средства поверки

3.1 При проведении поверки применяются инструментальные средства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты ИС, а также приведенными в таблице 2.

Таблица 2 – Средства измерений

Наименование	Регистрационный номер в Федеральном информационном фонде			
Термогигрометр ИВА-6Р-Д	46434-11			
Мультиметр цифровой 34401А	54848-13			
Планшетный компьютер с фотоаппаратом, настроенный				
на синхронизацию шкалы времени с тайм-сервера уровня				
stratum 1 (ntp1.niiftri.irkutsk.ru) Восточно-Сибирского	_			
филиала ФГУП «ВНИИФТРИ»				

- 3.2 Применяемые для поверки СИ должны иметь действующие свидетельства о поверке.
- 3.3 Допускается применение других СИ, обеспечивающих измерение параметров с требуемой точностью.

4 Требования к квалификации поверителей

4.1 Поверка ИС выполняется специалистами, аттестованными в качестве поверителей СИ, ознакомившиеся с технической и эксплуатационной документацией и настоящей

^{«+» –} операция выполняется, «-» – операция не выполняется;

[–] выполняется только при замене центрального процессора PLC.

методикой поверки, имеющие удостоверение на право работы с напряжением до 1000 В (квалификационная группа по электробезопасности не ниже третьей).

4.2 При проведении поверки соблюдают требования охраны труда предприятия, на котором проводят поверку ИС. Выполняют требования действующих нормативных актов, инструкций по охране труда и окружающей среды.

5 Требования безопасности

При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:

- ГОСТ Р МЭК 60950-2002 «Безопасность оборудования информационных технологий»;
 - «Правила устройств электроустановок», раздел I, III, IV;
- «Правила технической эксплуатации электроустановок потребителей» (утверждены Минэнерго России от 13.01.03 № 6);
- «Правила по охране труда при эксплуатации электроустановок» приказ № 328н от 24 июля 2013 г., с изменениями приказ № 74н от 19 февраля 2016 г.;
 - СНиП 3.05.07-85 «Системы автоматизации»;
- эксплуатационная документация на СИ, испытательное оборудование и компоненты ИС;
- СанПиН 2.2.2.542-96 «Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работы»;
- Федеральные нормы и правила в области промышленной безопасности «Правила безопасности при получении, транспортировании, использовании расплавов черных и цветных металлов и сплавов на основе этих расплавов» приказ № 656 от 30 декабря 2013 г.;
 - Инструкция по работе с компьютерной техникой (АСНи 01-99);
 - СНиП 23-05-95 «Естественное и искусственное освещение».

6 Условия поверки

Условия поверки ИС должны соответствовать техническим условиям эксплуатации компонентов ИС.

7 Подготовка к поверке

- 7.1 На поверку ИС предоставляют следующие документы:
 - описание типа СИ:
 - руководство по эксплуатации;
 - техническую документацию;
 - паспорт СИ;
- действующие свидетельства о поверке измерительных компонентов, входящих в состав ИК;
- свидетельство о предыдущей поверке ИС (при периодической и/или внеочередной поверке).
 - 7.2 Перед проведением поверки выполняют следующие подготовительные работы:
- изучают настоящий документ и эксплуатационную документацию на поверяемую ИС и её компоненты;

- проводят организационные и технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;
- подготавливают средства поверки к работе в соответствии с их эксплуатационной документацией.

8 Проведение поверки

8.1 Внешний осмотр

- 8.1.1 Проверяют соответствие комплектности ИС перечню, приведенному в паспорте СИ и таблице А.1 приложения А настоящей МП.
- 8.1.2 Проверяют целостность корпусов и отсутствие видимых повреждений измерительных компонентов.
- 8.1.3. Проверяют размещение измерительных компонентов, правильность схем подключения и маркировки, четкость нанесения обозначений.
- 8.1.4 Проверяют отсутствие обрывов и нарушений изоляции кабелей и жгутов, влияющих на функционирование ИС.
- 8.1.5 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий, отсоединившихся или слабо закрепленных элементов схемы.

При отсутствии возможности оперативного устранения недостатков, поверка ИС прекращается.

8.2 Поверка измерительных компонентов ИС

- 8.2.1 Проверяют наличие свидетельств о поверке и срок их действия для всех измерительных компонентов: ИП, PLC. Перечень измерительных компонентов представлен в приложении А паспорта ИС и таблице А.1 приложения А настоящей МП.
- 8.2.2 Проверяют наличие поверительных пломб, клейм, соответствие типов и заводских номеров фактически используемых измерительных компонентов типам и заводским номерам, указанным в предъявленных свидетельствах о поверке.

При выполнении условий указанных в п.п. 8.2.1 и 8.2.2 результат поверки считают успешным, а погрешности ИК соответствуют заявленным в описании типа СИ.

При выявлении измерительных компонентов без свидетельств о поверке, свидетельств с истекшим МПИ или не внесенных в Федеральный информационный фонд по обеспечению единства измерений РФ, операции по поверке ИС прекращаются.

8.3 Проверка условий эксплуатации ИС

Проверяют условия эксплуатации на соответствие требованиям нормированных в технической документации компонентов ИС.

Результат проверки положительный, если фактические условия эксплуатации каждого компонента ИС соответствуют рабочим условиям применения.

8.4 Проверка функционирования ИС

- 8.4.1 Проверка производится при её функционировании в рабочем режиме, средствами прикладного ПО, установленного на автоматизированном рабочем месте (APM).
- 8.4.2 Проверяют отображение текущих значений технологических параметров и информации о ходе технологического процесса, текущих значений даты и времени.
 - 8.4.3 Проверяют отсутствие сообщений об ошибках и неисправностях в ИК.

8.4.4 Проверяют регистрацию измеренных данных, ведение архива данных по всем ИК. Результат проверки положительный, если выполняются все условия.

8.5 Проверка идентификационных данных ПО

- 8.5.1 Проверку идентификационных данных ПО ИС проводят в процессе штатного функционирования. Прикладное ПО ИС включает в свой состав программное обеспечение, функционирующее на APM и в контроллере.
- 8.5.2 Идентификационные данные метрологически значимой части ПО ИС контрольные суммы файлов конфигурации проектов PLC и APM.
- 8.5.3 Определение значений контрольных сумм для файлов метрологически значимой части ПО проводится с помощью программатора с предустановленной утилитой HashCalc (допускается использование другой сторонней утилиты, реализующей расчет контрольной суммы по алгоритму MD5).

Определение значений контрольных сумм проводится следующим образом:

- запустить Hashcalc.exe;
- в выпадающем списке «Data Format» необходимо выбрать «File»;
- в текстовом поле «Data» указать путь до файла конфигурации проекта PLC;
- флажок «MD5» установить в положение включен;
- нажать кнопку «Calculate» и сравнить полученные данные с указанными в таблице 3 в соответствии с рисунком 1.

H HashCalc			-		×
Data Format:	Data:				
File <u>▼</u>	H:\PLC_kb1\AK1\PLC_AK11.P3				لت
□ HMAC	Key Format: Key:				
₩D5	16a6c26fc9dadd7d64214bc1ae8c915d				
□ MD <u>4</u>					
SHA1					
☐ SHA <u>2</u> 56				11.1	
☐ SHA <u>3</u> 84					
☐ SHA <u>5</u> 12					i e
☐ RIPEMD160					
☐ PANAMA					
□ <u>I</u> IGER					
<u> М</u> 22					
ADLER32					
□ C <u>R</u> C32					
⊏ eDonkey/ eMule					
<u>SlavaSoft</u>		Calculate	<u>C</u> lose	н	el <u>o</u> (

Рисунок 1 — Расчет контрольной суммы MD5 файла конфигурации проекта PLC

Таблица 3 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Проект контроллера PLC: «AK1-1» Проект резервного контроллера PLC: «AD1» Проект Genesis32 подсистемы визуализации: «Коксовая батарея №1»
Номер версии (идентификационный номер ПО)	_
Цифровой идентификатор ПО	Для файла конфигурации проекта PLC: «AK1-1»: PLC_kb1\AK1\PLC_AK11.P3 16a6c26fc9dadd7d64214bc1ae8c915d Для файла конфигурации проекта PLC: «AD1»: PLC_kb1\AD1\PLC_AD1.P3 59a521588974d48e4556b177bd29f539 Для файла конфигурации проекта «Коксовая батарея №1»: \KB1_GEN\Applications\GraphWorX32\Displays\KB_main.gdf 09a206a4343088e3e427b52a7b9f7ce5
Алгоритм вычисления цифрового идентификатора ПО	MD5

- в текстовом поле «Data» указать путь до файла конфигурации проекта Genesis32 станции визуализации;
- нажать кнопку «Calculate» в соответствии с рисунком 2 и сравнить полученные данные с указанными в таблице 3.

		abeliar SA		
Data Format:	Data:			
File ▼	H:\KB1_GEN\Applications\GraphWorX32\Displays\KB_main.gdf			فالد
□ HMAC	Key Format: Key: Text string	i de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición dela composición de la composición dela c		
☑ <u>M</u> D5	09a206a4343088e3e427b52a7b9f7ce5			
□ MD <u>4</u>				
□ SHA1		and the		
□ SHA <u>2</u> 56				13.0
□ SHA <u>3</u> 84				
□ SHA <u>5</u> 12				
☐ RIPEMD160				
□ PA <u>N</u> AMA				
□ <u>I</u> IGER				
□ M <u>D</u> 2				
ADLER32				
□ C <u>R</u> C32		100		
= eD <u>o</u> nkey/ eMule				
SlavaSoft	Calculate	<u>C</u> lose	1 н	elp

Рисунок 2 – расчет контрольной суммы MD5 файла конфигурации станции визуализации

8.5.4 Результат проверки положительный, если контрольные суммы файлов конфигурации проектов совпадают с приведенными в описании типа на ИС.

8.6 Определение погрешности хода времени APM ИС относительно координированной шкалы времени UTC (SU)

- 8.6.1 Выполняют принудительную синхронизацию хода времени планшетного компьютера с любым из тайм-серверов ФГУП «ВНИИФТРИ», являющимися средством передачи эталонных сигналов частоты и времени ГСВЧ РФ. Планшетный компьютер переводят в режим фотосъемки с настройками фиксации текущей даты и времени.
- 8.6.2 На APM вызывают системное окно операционной системы «Дата и время». Указанное окно индицирует часы с секундным отсчетом для APM.
 - 8.6.3 Производят фотофиксацию системного окна «Дата и время» на мониторе АРМ.
- 8.6.4 На фотоснимке осуществляют сличение времени планшетного компьютера с временем APM.

Результат проверки положительный, если отличие показаний шкалы времени соответствует ГОСТ 8.129–2013.

8.7 Определение времени рассогласования между PLC и APM

- 8.7.1 На программаторе или APM в online режиме запускают приложение отображающее дату и время в контроллере.
 - 8.7.2 На APM вызывают системное окно операционной системы «Дата и время».
- 8.7.3 С помощью приложения «Print Screen» операционной системы Windows или фотоаппарата производят фиксацию значений даты и времени.
 - 8.7.4 Осуществляют сличение времени PLC и APM.

Результат проверки положительный, если отличие времени на PLC и APM не превышает ± 1 секунды.

9 Оформление результатов поверки

- 9.1 Результаты поверки оформляют протоколом по форме, приведенной в приложении настоящей МП.
- 9.2 При положительных результатах поверки ИС оформляют свидетельство о поверке по форме приложения 1 приказа Минпромторга России от 02.07.2015 № 1815. Знак поверки наносится на свидетельство о поверке ИС в виде оттиска поверительного клейма. Система признается годной к эксплуатации.
- 9.3 При отрицательных результатах поверки ИС признается не пригодной к дальнейшей эксплуатации, на нее выдают извещение о непригодности в соответствии с приложением 2 приказа Минпромторга России от 02.07.2015 № 1815 с указанием причин.

Начальник отдела электро-радиотехнических СИ

А.И. Тестов

Разработали

Инженер по метрологии

А.Е. Репин

Инженер-программист 1 категории

А.В. Зотов

Приложение A (обязательное)

Метрологические характеристики измерительных каналов ИС

Таблина А 1

		Диапазон	СИ вз	кодящие в с	остав ИК ИС		Основная	погрешность ИК
№ ИК	Наименование ИК ИС	измерений физической величины, ед. измерений	Наименование, тип СИ	Госреестр №	Пределы допускаемой основной погрешности компонента ИК	Пределы допускаемой дополнительной погрешности компонента ИК	Фактическая	Пределы допускаемой погрешности
1	2	3	4	5	6	7	8	9
		Централь	ный процессор основного программируемого	контроллер	oa Modicon Quantum (140-C	PU-434-12A)		
-	Температура сырого		Термопреобразователь с унифицированным выходным сигналом Метран-270, модификация ТСМУ Метран-274 (далее - ТСМУ Метран-274)	21968-11	γ=±0,25 %	γ=±0,25 %/10 °C		
1	коксового газа в левой половине газосборника	от 0 до +180 ℃	Модуль ввода аналоговых сигналов серии Modicon TSX Quantum модификация 140ACI04000 контроллера программируемого логического PLC Modicon (далее - 140ACI04000)	18649-02	γ=±0,125%	γ=±0,0025 %/1 °C		Δ=±0,68 °C
2	Разряжение сырого коксового газа в левой магистрали	от -400 до 0 кгс/м²	Преобразователь давления измерительный Sitrans P DSIII 7MF4433 (далее - 7MF4433)	45743-10	γ=±(0,0029·κ+0,071) %	γ=±(0,08·κ+0,1) %		γ=±(0,0029·κ+0,2) %
	коксового газа		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
3	Температура сырого коксового газа в правой	от 0 до +180 °C	ТСМУ Метран-274	21968-11	γ=±0,25 %	γ=±0,25 %/10 °C		Δ=±0,68 °C
	половине газосборника	010 40 100 0	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		2 10,00 0
4	Давление сырого коксового газа в правой половине	±31,5 кгс/м²	Датчик давления Метран-150, модификация 150СG (далее - Метран-150СG)	32854-13	γ=±0,2 %	γ=±(0,15+0,09·κ) %/10 °C		γ=±0,3 %
:	газосборника		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
5	Разряжение сырого коксового газа в правой магистрали	от -400 до 0 кгс/м²	Датчики давления Сапфир-22МП (далее - Сапфир-22МП)	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C		γ=±0,7 %
	коксового газа		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		-
6	Давление сырого коксового газа в левой половине	±31,5 кгс/м²	Метран-150CG	32854-13	γ=±0,2 %	$\gamma = \pm (0.15 + 0.09 \cdot \kappa)$ %/10 °C		γ=±0,3 %
Ů	газосборника	±31,3 KI 0/M	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Y-10,5 76
7	Давление пара на пароинжекцию	от 0 до 16 кгс/см²	Преобразователь давления измерительный Sitrans P DSIII 7MF4033 (далее - 7MF4033)	45743-10	γ=±(0,0029·κ+0,071) %	γ=±(0,08·κ+0,1) %	γ=±(0,0029·κ+0,2	γ=±(0,0029·к+0,2) %
			140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
8	Температура отопительного коксового газа до	от 0 до +1 00 °C	Термопреобразователи с унифицированным выходным сигналом ТСМУ (далее - ТСМУ-3212)	42454-09	γ=±0,5 %	γ=±0,25 %/10 °C		Δ=±0,63 °C
	подогревателя		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		

Продолжение таблицы А.1

1	цолжение таолицы А.1	3	4	5	6	7 [8	7 9
	Температура отопительного	-	ТСМУ Метран-274	21968-11	γ=±0,25 %	γ=±0,25 %/10 °C		
9	коксового газа после	от 0 до +100°C	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Δ=±0,38 °C
	подогревателя Давление в магистрали			19056-99		<u> </u>		
10	отопительного коксового газа	от 0 до 1000 мм. вод. ст.	Сапфир-22МП	<u> </u>	γ=±0,5 %	γ=±0,2 %/10 °C		γ=±0,7 %
	до подогревателя	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
11	Давление в магистрали отопительного коксового газа	от 0 до 1000	Сапфир-22МП	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C		γ=±0,7 %
	после подогревателя	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		7 20,7 70
12	Давление отопительного коксового газа на машинной	от 0 до 300	7MF4433	45743-10	γ =±(0,0029·κ+0,071) %	γ=±(0,08·κ+0,1) %		γ=±(0,0029·κ+0,2) %
12	стороне (начало)	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ-±(0,0029 k+0,2) %
13	Давление отопительного	от 0 до 250	Сапфир-22МП	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C		γ=±0,7 %
13	коксового газа на машинной стороне (конец)	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ-±0,7 %
14	Расход отопительного	от 0 до 12000 м ³ /ч	Расходомер ProBar	20102-04	δ=±1,5 %	γ=±0,15 %/28 °C		
14	коксового газа на машинной стороне	ого до 12000 м-74	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ=±1,8 %
1.5	Давление отопительного	от 0 до 300	7MF4433	45743-10	γ=±(0,0029·κ+0,071) %	γ=±(0,08·κ+0,1) %		
15	коксового газа на коксовой стороне (начало)	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C	γ=±(0,0029·k+	$\gamma = \pm (0.0029 \cdot \kappa + 0.2) \%$
16	Давление отопительного	от 0 до 250	Сапфир-22МП	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C		.0.7.0/
16	коксового газа на коксовой стороне (конец)	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ=±0,7 %
17	Расход отопительного	0 - 12000 3/	Расходомер ProBar	20102-04	δ=±1,5 %	γ=±0,15 %/28 °C		11.00/
17	коксового газа на коксовой стороне	от 0 до 12000 м³/ч	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ=±1,8 %
18	Разряжение в общем борове	от -60 до 0	Датчики давления Метран-100, модификация Метран-100-ДВ	22235-01	γ=±0,25 %	-		γ=±0,33 %
		мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
19	Температура в борове машинной стороны	от 0 до +600°C	Термопреобразователь с унифицированным выходным сигналом Метран-270, модификация ТХАУ Метран-271 (далее - ТХАУ Метран-271)	21968-11	γ=±0,5 %	γ=±0,45 %/10 °C		Δ=±3,75 °C
			140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
20	Разряжение в борове	от -60 до 0	Метран-150CG	32854-13	γ=±0,2 %	$\gamma = \pm (0.15 + 0.09 \cdot \kappa) \%/10 ^{\circ}C$		γ=±0,3 %
	машинной стороны	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C	, -,-,-	
21	Температура в борове коксовой стороны	от 0 до +600 °C	ТХАУ Метран-271 140ACI04000	21968-11 18649-02	γ=±0,5 % γ=±0,125 %	γ=±0,45 %/10 °C	Δ=±3,75 °C	
	Разряжение в борове	от -60 до 0	140AC104000 Метран-150CG	32854-13	γ=±0,125 % γ=±0,2 %	γ=±0,0025 %/1 °C γ=±(0,15+0,09·κ) %/10 °C		
22	коксовой стороны	ММ. ВОД. СТ.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ=±0,3 %

Прододжение таблицы А.1

11002	цолжение таолицы А.1	3	A	5	6	7	8	9
	Температура горячего воздуха	,	TCMY-3212	42454-09	γ=±0,5 %	γ=±0,25 %/10 °C		
23	на обогрев бункеров	от 0 до +100 °C	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Δ=±0,63 °C
24	Давление технической воды	от 0 до 1 МПа	Датчик давления Метран-55 (далее -Метран- 55)	18375-08	γ=±0,25 %	-		γ=±0,33 %
			140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
25	Расход технической воды	от 0 до 3150 м³/ч	Расходомер-счетчик ультразвуковой многоканальный УРСВ "ВЗЛЕТ МР", модификация УРСВ-510 (далее ВЗЛЕТ УРСВ-510)	28363-04	δ=±1,51 %	_		γ=±1,73 %
			140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
26	Давление пара после регулятора	от 0 до 10 кгс/см²	Преобразователь давления измерительный Sitrans P типа 7MF, мод. Z 7MF1564 (далее - 7MF1564)	45743-10	γ=±0,25 %	γ=±0,25 %/10 K		γ=±0,4 %
			140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
27	Температура аммиачной воды	от 0 до +100 °C	ТСМУ-3212	42454-09	γ=±0,5 %	γ=±0,25 %/10 °C]	Δ=±0,63 °C
	на орошение	01 0 <u>4</u> 0 + 100 °C	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		2 =0,00 0
28	Давление аммиачной воды в оросительном оп аммиакопроводе в левой половине газосборника	от 0 до 16 кгс/см²	7MF1564	45743-10	γ=±0,25 %	γ=±0,25 %/10 K		γ=±0,4 %
20		от одо токтосм	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		, — 0 , . , .
29	Давление аммиачной воды в оросительном	от 0 до 16 кгс/см²	7MF1564	45743-10	γ=±0,25 %	γ=±0,25 %/10 K		γ=±0,4 %
29	аммиакопроводе в правой половине газосборника	ого до токтелем-	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		7 -0,770
30	Расход аммиачной воды на	от 0 до 3150 м³/ч	ВЗЛЕТ УРСВ-510	28363-04	δ=±1,66 %	_		γ=±1,9 %
30	орошение	01 0 до 5150 м /ч	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		7 = 2,5 7.0
21	Температура аммиачной воды	0 1100.00	ТСМУ Метран-274	21968-11	γ=±0,25 %	γ=±0,25 %/10 °C		Δ=±0,38 °C
31	на гидроинжекцию и гидросмыв	от 0 до +100 °C	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Δ=±0,38 C
	Расход аммиачной воды на	0 000 1/	ВЗЛЕТ УРСВ-510	28363-04	δ=±1,54 %	_	İ	1 76 9/
32	гидроинжекцию и гидросмыв	от 0 до 300 м ³ /ч	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ=±1,76 %
33	Давление аммиачной воды в оросительном	от 0 до 16 кгс/см²	7MF1564	45743-10	γ=±0,25 %	γ=±0,25 %/10 K]	γ=±0,4 %
	оросительном аммиакопроводе	от о до то кто/см	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		7 -0,. 70
34	Давление воздуха в	от 0 до 16 кгс/см ²	Сапфир-22МП	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C	1	γ=±0,7 %
J4	магистрали сжатого воздуха	OI O HO IO RICCM	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		1 -0,7 70
35	Давление воздуха в воздухопроводе на	от 0 до 160 кПа	Метран-55	18375-08	γ=±0,25 %	_		γ=±0,33 %
33	уплотнение крышек стояков (после регулятора)	от одо тоо кита	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		7 -0,55 /0

Продолжение таблицы А.1

1100	олжение таолицы А.1			<u>,</u>				
1	2	3	4	5	6	7	8	9
36	Расход сжатого воздуха на уплотнение крышек стояков и	от 0 до 100 м³/ч	Расходомер-счетчик вихревой объемный YEWFLO DY	17675-09	δ=±1 %			γ=±1,14 %
	пневмообрушение		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
37	Давление аммиачной воды в аммиакопроводе на от 0 до 60 кгс/см² гидроинжекцию и гидросмыв	7MF1564	45743-10	γ=±0,25 %	γ=±0,25 %/10 K		γ=±0,4 %	
		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		7	
38-47	Температура в подовых каналах (ГВК) машинная	от 0 до +500°C	ТХАУ Метран-271	21968-11	γ=±0,5 %	γ=±0,45 %/10 °C		Δ=±3,13 °C
	сторона(4, 5, 22, 23, 38, 39, 56, 57, 74, 75 простенок)	огодо госо с	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Δ-13,13 C
48-57	Разряжение в ГВК машинная сторона НИЗ (4, 5, 22, 23, 38,	от -16 до 0 кгс/м²	Сапфир-22МП	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C		γ=±0,7 %
	39, 56, 57, 74, 75 простенок)	от то до о кго м	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		1 20,7 70
	Температура в подовых каналах (ГВК) (коксовая		ТХАУ Метран-271	21968-11	γ=±0,5 %	γ=±0,45 %/10 °C		
58-67	сторона (4, 5, 22, 23, 38, 39, 56, 57, 74, 75 простенок)	от 0 до +500°C	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Δ=±3,13 °C
68-77	Разряжение в ГВК коксовая сторона НИЗ (4, 5, 22, 23, 38, 39, 56, 57, 74, 75 простенок) от -16 до 0 кгс/м²	Сапфир-22МП	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C		γ=±0,7 %	
00-77			140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Y-10,7 70
78	Температура пара	от 0 до +600 °C	ТХАУ Метран-271	21968-11	γ=±0,5 %	γ=±0,45 %/10 °C		Δ=±3,75 °C
,,,		01 0 до 1000 С	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Д-13,73 С
79	Давление пара в магистрали	от 0 до 10 кгс/см ²	Сапфир-22МП	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C	1	γ=±0,7 %
	Australia india a marine i parin	OT O AD TO ALCOOM	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
80	Расход пара	от 0 до 2000 кг/ч	Расходомер-счетчик вихревой объемный YEWFLO DY	17675-09	δ=±1 %	_		γ=±1,14 %
			140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
81	Давление пара на	от 0 до 10 кгс/см²	Сапфир-22МП	19056-99	γ=±0,5 %	γ=±0,2 %/10 °C	1	γ=±0,7 %
	подогревателе		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
82	Температура конденсата пара	от 0 до +180°C	ТСМУ Метран-274	21968-11	γ=±0,25 %	γ=±0,25 %/10 °C	1	Δ=±0,68 °C
	•		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		· · · · · · · · · · · · · · · · · · ·
		центральный	процессор резервного программируемог		iepa Modicon Quantum (
83	Давление сырого коксового газа в правой половине	±31,5 кгс/м²	Метран-150CG	32854-13	γ=±0,2 %	γ=±(0,15+0,09·κ) %/10 °C		γ=±0,3 %
	газосборника		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		
84	Давление сырого коксового газа в левой половине	±31,5 кгс/м²	Метран-150CG	32854-13	γ=±0,2 %	γ=±(0,15+0,09·κ) %/10 °C		γ=±0,3 %
	газосборника		140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		

Продолжение таблицы А.1

1	2	3	4	5	6	7	8	9
85	Разряжение в борове	от -60 до 0	Метран-150CG	32854-13	γ=±0,2 %	γ=±(0,15+0,09·к) %/10 °C	·	•=±0.2.9/
65	машинной стороны	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ=±0,3 %
86	Разряжение в борове	от -60 до 0	Метран-150CG	32854-13	γ=±0,2 %	$\gamma = \pm (0.15 + 0.09 \cdot \kappa) \%/10 °C$		γ=±0,3 %
- 00	коксовой стороны	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		y=±0,5 /6
87	Давление отопительного коксового газа на машинной	от 0 до 300	7MF4433	45743-10	γ=±(0,0029·κ+0,071) %	γ=±(0,08·κ+0,1) %		γ=±(0,0029·κ+0,2) %
0,	стороне (начало)	MM ROT CT	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		 -= (0,0029 k+0,2) /6
88	Давление отопительного	от 0 до 300	7MF4433	45743-10	γ=±(0,0029·κ+0,071) %	γ=±(0,08·κ+0,1) %		γ=±(0,0029·κ+0,2) %
	коксового газа на коксовой стороне (начало)	мм. вод. ст.	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		γ-±(0,0029 k+0,2) /6
89	Температура отопительного	от 0 до +100°C	TCMY-3212	42454-09	γ=±0,5 %	γ=±0,25 %/10 °C		Δ=±0,63 °C
	коксового газа до подогревателя	01 0 до 1100 С	140ACI04000	18649-02	γ=±0,125 %	γ=±0,0025 %/1 °C		Δ=±0,05 C

Примечания – Δ - абсолютная погрешность измерения, γ - приведенная погрешность к верхнему значению диапазона измерения, δ - относительная погрешность измерения, к - коэффициент соотношения интервалов измерения

Приложение Б (обязательное) Образец оформления протокола поверки

протокол поверки

	№	OT «	»	_20	_ г.
Средство измерений (СИ)					
н	аименование, тип				
nana waray uayan (uayana)					
заводской номер (номера)					
принадлежащее	идического (физического)	лица			
поверено в соответствии с	(*				
	ер документа на методику	поверки			
с применением эталонов:					
наименование, заводской	номер, разряд, класс или	погрешность			
разряд, класс или погрешн	ость эталона, применяемог	о при поверке			
при следующих значениях влияющих факторов	:				
 температура окружающего воздуха 					
– атмосферное давление	κПа;				
– относительная влажность					
напряжение питания	В;				
– частота	Гц.				
_					
Результаты операций поверки:					
1 Внешний осмотр		<u></u>			
2 Поверка измерительных компонентов ИС					
3 Проверка условий эксплуатации ИС					
5 Проверка идентификационных данных ПО			W 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
6 Определение погрешности хода времени АР	РМ ИС относител	ьно коорд	инирован	ной г	икаль
времени UTC (SU)					
7 Определение времени рассогласования между					
Результаты проверки метрологических харан				ИС	
представлены в таблице по форме таблицы А.1	приложения А на	стоящей М	1П.		
Заключение СИ (не) соответствует метрологиче	еским требования	М			
Поверитель					
подпись		инициаль	і, фамилия		

Приложение В

(справочное)

Перечень ссылочных нормативных документов

ГОСТ 8.508-84 ГСИ. Метрологические характеристики средств измерений и точностные характеристики средств автоматизации ГСП. Общие методы оценки и контроля

ГОСТ 18404.0-78 Кабели управления. Общие технические условия

ГОСТ 26411-85 Кабели контрольные. Общие технические условия

ГОСТ Р МЭК 870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров

РМГ 62-2003 ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации

ПР 50.2.006-94 ГСИ. Порядок проведения поверки средств измерений

МИ 2439-97 ГСИ. Метрологические характеристики измерительных систем. Номенклатура. Принципы регламентации, определения и контроля

ГОСТ 2.601-2006 ЕСКД. Эксплуатационные документы

ГОСТ 2.610-2006 ЕСКД. Правила выполнения эксплуатационных документов

ГОСТ 8.417-2002 ГСИ. Единицы величин

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний

ГОСТ 8.009-84 ГСИ. Нормируемые метрологические характеристики средств измерений

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ Р 8.654-2015 ГСИ. Требования к программному обеспечению средств измерений. Основные положения

РМГ 29-99 ГСИ. Метрология. Основные термины и определения

РМГ 51-2002 ГСИ. Документы на методики поверки средств измерений. Основные положения

РМГ 74-2004 ГСИ. Методы определения межповерочных и межкалибровочных интервалов средств измерений

МИ 2440-97 ГСЙ. Методы экспериментального определения и контроля характеристик погрешности измерительных каналов измерительных систем и измерительных комплексов

Р 50.2.077-2014 ГСОЕИ. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения

МИ 3290-2010 ГСИ. Рекомендация по подготовке, оформлению и рассмотрению материалов испытаний средств измерений в целях утверждения типа

ГОСТ Р 8.736-2011 ГСИ Методы обработки результатов измерений. Основные положения

ГОСТ 8.129-2013 ГСОЕИ Государственная поверочная схема для средств измерений времени и частоты

Лист регистрации изменений

Номер изменения	Номер извещения об изменении	измененных	Номера замененных		з аннулированных	Всего листов (после изменения)	Дата изменения	ФИО ответственного за внесение изменения	Подпись
1	2	3	4	5	6	7	8	9	10
				-					
								1	
-				•					
									