

ПромАвтоматика

194044, Россия, г. Санкт-Петербург, Пироговская набережная, д. 17 тел: (812) 603-23-17 факс: (812) 603-23-10. F-mail: **Da**(*Q*)**Da.FII**. http://www.pa.r

тел.: (812) 603-23-17 факс:(812) 603-23-10. E-mail: **pa@pa.ru**, http://www.pa.ru Russia, St.-Petersburg, Pirogovskaya nab., 17. Tel:(+7 812) 603-23-17 Fax: (+7 812) 603-23-10

Утверждаю

Генеральный директор

ООО «ПромАвтоматика»

А.А. Ларионов

» 2015 г.

Утверждаю

в части Приложение А.

методика поверки

ниректор ФГУП «ВНИИМ

и. Д.И. Менделеева»

К.В. Гоголинский

января 2016 г.

СИСТЕМЫ ИЗМЕРЕНИЯ ВОЗДУШНОГО ЗАЗОРА РОТОР-СТАТОР

Руководство по эксплуатации

ПРГА. 000509.00 РЭ

Руководитель лаборатории 2520 ФГУП «ВНИИМ им. Д.И. Менделеева»

> С.Е. Верозубов «____»_____ 2016 г.

г. Санкт-Петербург

2015 г.

Подп. и дата

№ Инв. № дубл.

Взам. инв.

Подп. и дат

. № подл.

Содержание

Вве	ведение	
1	Описание и работа системы измерения воздушного зазора	
	1.1 Назначение системы	
	1.2 Технические характеристики системы	4
	1.3 Состав системы	4
	1.4 Устройство и работа системы и технические характеристики	4
	1.4.1 Конструкция системы	4
	1.4.2 Описание датчика и удлинительного кабеля	5
	1.4.3 Описание блока преобразователя сигналов	6
	1.4.4 Описание работы системы	7
	1.5 Средства измерения, инструмент и принадлежности	9
	1.6 Маркировка и пломбирование СЧ системы	9
	1.7 Упаковка	10
2	Использование по назначению	11
3	Подготовка системы к использованию	11
	3.1 Меры безопасности при подготовке системы	11
4	Использование системы	
	4.1 Порядок включения и выключения системы	11
	4.2 Контроль работоспособности системы	
5	Техническое обслуживание СЧ системы	
6	Текущий ремонт СЧ системы	14
7	Текущий ремонт СЧ системы	14
8	Хранение	
9	Транспортирование	
10	Утилизация	
При	риложение А Методика поверки	

				Γ
Изм	Лист	№ докум.	Подп.	Дата
Разг	раб.	Жарков		
Про	верил	Ярмолинский		
Утве	рдил	Ярмолинский		

Подп. и дата

Инв. № дубл.

Взам. инв.№

и дата

Подп.

Инв. № подл.

ПРГА.000509.00 РЭ

СИСТЕМА ИЗМЕРЕНИЯ ВОЗДУШНОГО ЗАЗОРА РОТОР-СТАТОР Руководство по эксплуатации

JIMT.	Лист	Листов
	2	23

Введение

Руководство по эксплуатации предназначено для изучения обслуживающим персоналом ГЭС конструкции, устройства и работы системы измерения воздушного зазора роторстатор (в дальнейшем — система) ПРГА. 000509.00, а также содержит указания по техническому обслуживанию, правильной и безопасной технической эксплуатации системы.

Руководство по эксплуатации является основным документом определяющим организацию, объём, периодичность и порядок проведения технического обслуживания системы.

Руководство содержит технические характеристики, описание принципа действия и другие сведения, необходимые для наиболее полного использования технических возможностей системы.

Персонал, участвующий в техническом обслуживании системы должен знать «Правила технической эксплуатации электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителей», должен пройти аттестацию и иметь допуск к работе на электроустановках не ниже III квалификационной группы.

В тексте приняты следующие сокращения:

APM	автоматизированное рабочее место;
БПС	блок преобразования сигналов;
ИП	источник питания;
кд	конструкторская документация;
ЛКП	лакокрасочное покрытие;
ОУ	операционный усилитель;
РЭ	руководство по эксплуатации;
СД	синхронный детектор;
СЧ	составная часть;
СИ	средства измерений;

Инв. № подл. подп. и дата Взам. инв. № Инв. № дубл. Подп. и д

Изм Лист № докум. Подп. Дата

- 1 Описание и работа системы измерения воздушного зазора
- 1.1 Назначение системы
- Система измерения воздушного зазора предназначена для измерения воздуш-1.1.1 ного зазора между статором, на котором закреплен датчик, и ротором в генераторах переменного тока.
 - Система допускает эксплуатацию в условиях воздействия: 1.1.2 температуры наружного воздуха от минус 15 до плюс 125 °C (датчик воздушного зазора), 0 до плюс 55 °C (блок преобразователя сигналов);
 - относительной влажности воздуха до 95%, при температуре 25 °C.

Система устойчива к пыли и масляным загрязнениям

- 1.2 Технические характеристики системы
- 1.2.1 Основные параметры и характеристики системы приведены в таблице 1.1 Таблипа 1.1

Наименование параметра	Номинальное значение	Единица из- мерений	Примеча- ние
Диапазон измерения воздушного зазора	от 6 до 30	мм	
Предел допускаемой основной относительной погрешности измерения зазора	±5	%	
Номинальное значение коэффициента преобразования	0,667	мА/мм	
Пределы допускаемого относительного от- клонения действительного значения коэф- фициента преобразования от номинального	не более ±5	%	
Нелинейность амплитудной характеристики в диапазоне измерений зазора	не более ±5	%	
Потребляемая мощность	не более 2	BA	
Напряжение питания, U вх	24 +2,4 -3,6	В	
Средний срок службы	10	лет	

1.3 Состав системы

1.3.1 Система измерения воздушного зазора состоит из датчика воздушного зазора (в дальнейшем – датчика) AGS-240 и блока преобразователя сигналов SPA-01 соединенными двумя коаксиальными кабелями.

1.3.2 Комплект поставки системы приведен в таблице 1.2

Таблица 1.2

дата z

Подп.

дубл.

ž

Инв.

ž инв.

Взам.

дата

z

Подп.

подп ž

Наименование	Обозначение	Количество
Датчик воздушного зазора AGS-240	ПРГА.000509.01	01
Блок преобразователя сигналов SPA-01	ПРГА.000509.02	01
Кабель	ПРГА.000509.03	5 метров
Руководство по эксплуатации	ПРГА.000509.00 РЭ	01
Паспорт	ПРГА.000509.00 ПС	01

- 1.4 Устройство и работа системы и технические характеристики
- 1.4.1 Конструкция системы
- 1.4.1.1 Конструкция датчика
- 1.4.1.1.1 Датчик представляет собой трёхслойную печатную плату с вмонтированными внутрь, двумя коаксиальными кабелями.

Первый слой – текстолитовая крышка с шелкографией (0,5 мм);

MEN	Лист	№ докум.	Подп.	Дата

ПРГА.000509.00 РЭ

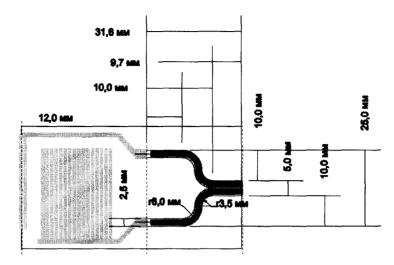


Рис.1.1 Общий вид центрального слоя и проводов

- 1.4.1.2 Конструкция блока преобразователя сигналов
- 1.4.1.2.1 Корпус блока преобразователя изготовлен из алюминия и обеспечивает устойчивость к метеовоздействиям и защищает электронику датчика от агрессивной среды.
 - 1.4.2 Описание датчика и удлинительного кабеля
- 1.4.2.1 Датчик бесконтактный емкостного типа представляет из себя развернутый плоский конденсатор и состоит из двух обкладок, экранированных со стороны задней поверхности датчика. Установка датчика в соответствии с рис. 1.2

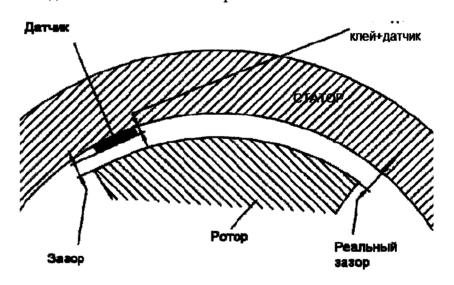


Рис. 1.2 Место установки датчика

1.4.2.2 Датчик воздушного зазора с диапазоном измерений 24 мм рассчитан на обеспечении максимальной безотказности в жестких условиях работы в гидрогенераторах. Датчик способен работать в непрерывном режиме, обеспечивая заданную точность измерений, при температуре от минус 15 до плюс 125°С. Датчик сохраняет способность к точной и бесперебойной работе в условиях магнитных полей до 1,8 Тл, которые возникают между полюсами ротора и статором. Во избежание ослабления разъемных соединений, датчик и удлинительный кабель имеют разъемы типа SMA.

Внешний вид датчика и кабеля представлены на рис. 1.3

Подп

Инв. №

инв.

Взам.

дата

Z

Подп.

ПРГА.000509.00 РЭ

Рис. 1.3 Внешний вид датчика с кабелем

1.4.2.3 Параметры датчика приведены в таблице 1.3

Таблица 1.3

Наименование параметра	Номинальное значение	Единица измерений	Примеча- ние
Пределы допускаемой дополнительной относительной погрешности измерений зазора при воздействии на датчик максимальных значений повышенной и пониженной рабочей температуры среды, при максимальной повышенной относительной влажности воздуха	не более ±5,0	%	
Магнитное поле окружающей среды	до 1,8	Тл	50 или 60 Гц
Габаритные размеры (Д х Ш х В)	240 x 40 x 3	ММ	
Macca	не более 0,065	Kr	

- 1.4.3 Описание блока преобразователя сигналов
- 1.4.3.1 Блок преобразования сигналов предназначен для формирования синусоидального напряжения частотой 200 кГц и приема сигнала с приемной обкладки датчика для дальнейшего его преобразования.

В состав преобразователя входят следующие СЧ:

- генератор;
- усилитель;
- синхронный детектор;
- фильтр (для выделения постоянной составляющей);
- конвертор;
- модуль питания.

Внешний вид преобразователя представлен на рис. 1.4

Инв. № подл. подп. и дата Взам. инв. № иубл. Подп.

Изм Лист № докум. Подп. Дата

ПРГА.000509.00 РЭ

Рис. 1.4 Внешний вид преобразователя
1.4.3.2 Параметры блока преобразователя сигналов приведены в таблице 1.4
Теблице 1.4

таолица 1.4			
Наименование параметра	Номинальное значение	Единица измерений	Примечание
Ток, вых.	420	мА	
Частота выходного сигнала генератора	от 195 до 205	кГц	
Рабочий диапазон температур эксплуа- тации (хранения)	(0÷+55) (-20÷+85)	°C	
Габаритные размеры (ДхШхВ)	145 x 75 x 32	MM	
Macca	не более 0,24	КГ	
Степень защиты по ГОСТ 14254-96	IP66		

1.4.4 Описание работы системы

1.4.4.1 Общий вид системы представлен на рис. 1.5

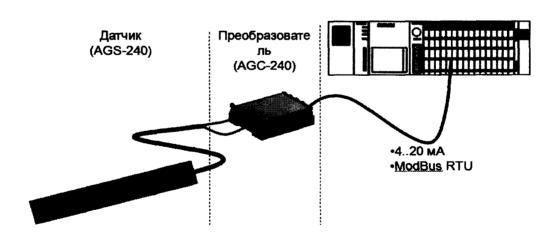


Рис. 1.5 Общий вид системы

Датчик воздушного зазора имеет две обкладки, которые обладают емкостной связью. На одну обкладку (передающую) при помощи кабеля длиной 5 м подается сигнал возбуждения с генератора БПС в виде синусоидального напряжения частотой 200 кГц (рис. 1.6), в результате чего возникает электрическое поле, которое изменяется при изменении расстояния между основанием, на котором закреплен датчик (статор), и объектом, до которого измеряется расстояние (полюс ротора). Модулированный сигнал на выходе приемной обкладки пропорционален расстоянию между статором и ротором генератора.

Изм Лист	№ докум.	Подп.	Дата

Пош.

№ дубл

инв.

Взам.

дата

z

Подп.

ПРГА.000509.00 РЭ

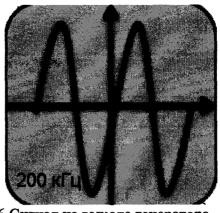


Рис 1.6 Сигнал на выходе генератора

Сигнал с приемной обкладки усиливается и детектируется синхронным детектором. Сигнал на выходе усилителя представлен на рис. 1.7

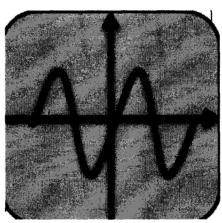


Рис 1.7 Сигнал на выходе усилителя

Синхронное детектирование основано на операции умножения двух сигналов:

- опорного сигнала, с генератора;
- промодулированного сигнала с приемной обкладки, частота которого равна частоте опорного сигнала. Сигнал на выходе СД представлен на рис. 1.8

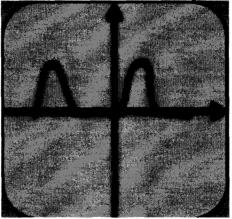


Рис 1.8 Сигнал на выходе СД

В системе применен СД в связи с тем, что он обладает важными свойствами для обработки сигналов:

- обладает высокой частотной избирательностью, за счет чего происходит выделение сигнала из шума;
- чувствителен к амплитуде измеряемого сигнала.

В случае, когда частота сигнала точно равна опорной частоте (сигналы на входах умножителя синхронны - отсюда название СД), в результате умножения появится составляю-

MEN	Лист	№ докум	. п	одп.	Дата

щая с нулевой разностной частотой, т.е. постоянная составляющая, (сигнал на выходе СД пропорционален амплитуде входного сигнала).

С выхода фильтра постоянная составляющая поступает через конвертер на выход БПС. Постоянный ток на выходе преобразователя меняется от 4 мА при минимальном зазоре до 20 мА - при максимальном. (Предполагается, что зазор будет меняться в пределах от 6 до 30 мм).

Для достижения наулучших результатов датчик и БПС калибруются изготовителем и поставляются в паре.

Сигнал на выходе фильтра представлен на рис. 1.9

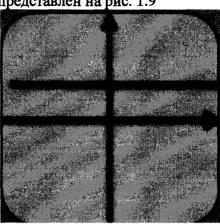


Рис 1.9 Сигнал на выходе фильтра

Информация о минимальной величине воздушного зазора необходима оперативному персоналу для своевременного принятия решений о заблаговременном выводе гидроагрегата из работы до возникновения серьезных повреждений (задевание ротора о статор).

- 1.5 Средства измерения, инструмент и принадлежности
- $1.5.1\,$ СИ, инструмент и принадлежности применяемые для ТО и ремонта системы приведён в таблице $1.5\,$

Таблица 1.5

дата

Подп.

Инв.

NHB,

Взам.

дата

z

Подп.

Наименование	Основные требования к оборудованию	Рекомендуемое оборудование
Осциллограф	Измерение частоты генератора 200±5 кГц, с погрешностью измерения не более ±1%	TDS 1002 B
Мультиметр постоянного и переменного тока	о посто- Измерение напряжения 24 В, с погрешностью из-	
Мегаомметр	Верхний предел измерений не менее 1 Мом, измерительное напряжение 500 В, с погрешностью измерения не более ±20%	Мегаомметр Е6-24/1
Измеритель сопротивления заземления	Измерение сопротивления заземления. Значение R не более 0,1 Ом, с погрешностью измерения не более ±5%	Ф4103-М1
Мультиметр	Контроль наличия электрического соединения	Цифровой мультиметр RD 700 в режиме «прозвонка»
Штанген-циркуль	Контроль задаваемого зазора 6-30 мм с погрешностью измерения не более ±1%	шцц

Примечание: Возможно применение СИ других типов, метрологические характеристики которых удовлетворяют предъявленным требованиям.

- 1.6 Маркировка и пломбирование СЧ системы
- 1.6.1 СЧ системы имеют маркировку согласно ГОСТ 18620-86 и в соответствии с КД

MEN	Лист	Nº	докум.	Подп.	Дата

на СЧ системы. Маркировка выполнена способом, обеспечивающим ее чёткость и сохраняемость.

Фирменная табличка устанавливается на блок преобразователя сигналов, с указанием:

- товарного знака предприятия изготовителя OOO «ПромАвтоматика»;
- наименования СЧ системы;
- заводского номера СЧ системы;
- даты изготовления;
- знака утверждения типа.

Знак утверждения типа наносится на лицевой панели блока преобразователя сигналов методом металлопластики и в эксплуатационной документации (РЭ, ПС) типографским способом.

- 1.6.2 Маркировка датчика нанесена непосредственно на верхний слой платы методом шелкографии, с указанием:
 - товарного знака предприятия изготовителя OOO «ПромАвтоматика»;
 - наименования СЧ датчик воздушного зазора.

Блок преобразователя сигналов SPA-01 СЧ опломбирован голографической наклейкой предприятия-изготовителя, установленной на верхней крышке и боковой поверхности блока.

1.7 Упаковка

- 1.7.1 Упаковка СЧ системы произведена по чертежам предприятия-изготовителя ООО «ПромАвтоматика» для условий хранения и транспортирования, приведённых в разделах 9,10 соответственно настоящего РЭ.
- 1.7.2 Упаковка рассчитана на одноразовое применение и должна обеспечивать сохранность СЧ системы во время транспортирования и хранения.

Подп. и д	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл.	 -

- 2.1 Эксплуатационные ограничения
- 2.1.1 Климатические условия монтажа и эксплуатации должны соответствовать требованиям 1.1.2 настоящего РЭ. Возможность работы системы в условиях, отличных от указанных, должна согласовываться предприятием-изготовителем.
 - 2.1.2 Условия эксплуатации соответствуют требованиям 1.1.3 настоящего РЭ.
 - 2.1.3 Допустимые отклонения напряжения приведены в п. 1.2.1, таблица 1.1
 - 3 Подготовка системы к использованию
 - 3.1 Меры безопасности при подготовке системы
 - 3.1.1 При эксплуатации системы необходимо строго соблюдать:
 - "Правила техники безопасности при эксплуатации электроустановок потребителей";
 - "Правила технической эксплуатации электроустановок потребителей";
 - "Правила устройства электроустановок".
 - 3.1.2 К работе с СЧ системы допускаются лица прошедшие инструктаж по технике безопасности при работе с электро и радиоизмерительными приборами.
 - 3.1.3 Необходимо соблюдать следующие меры безопасности:
 - при проведении монтажных и профилактических работ СЧ системы должны быть отключены от сети питания;
 - система должна быть подключена к контуру заземления;
 - при ремонтных и наладочных работах СЧ системы корпуса измерительных приборов и компьютеров должны быть заземлены.
 - 4 Использование системы
 - 4.1 Порядок включения и выключения системы
- 4.1.1 Питание системы осуществляется напряжением 24 V DC, которое подается на клеммы 1 и 2 клеммника X3 БПС при помощи кабеля питания (для опытного образца). Сначала подключается кабель питания к БПС, а затем к сети. Отключение производится в обратном порядке (кабель питания отключается от сети, затем от БПС).
 - 4.2 Контроль работоспособности системы
- 4.2.1 Система считается работоспособной, если функционирование её проходило в соответствии с п.п. 1.1.1, а технические характеристики системы соответствуют, приведённым в таблицах 1.1, 1.3, 1.4
- 4.2.2 Для контроля работоспособности БПС используется сигнал ошибки ERR+, ERR, который выводится на клеммы 3 и 4 клеммника X3 блока. В качестве индикатора для оценки работы БПС можно использовать светодиод, подключив его в цепь сигнала ошибки (для опытного образца индикация не используется).

Сигнал ошибки, формируется после детектирования напряжения с генератора и реализован на оптроне в виде «сухого контакта», нормально замкнутого при нормальной работе.

После включения электропитания, система функционирует в соответствии с её назначением.

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм Лист № докум. Подп. Дата

ПРГА.000509.00 РЭ

- 5 Техническое обслуживание СЧ системы
- 5.1 Общие указания
- 5.1.1 Надёжная работа СЧ системы будет обеспечена только при своевременном и правильном проведении ТО. При проведении ТО должно быть обращено внимание на правильность выполнения операций, на точность проводимых измерений. Все неисправности обнаруженные во время осмотров и проведении ТО должны быть устранены обслуживающим персоналом.
 - 5.2 Виды и периодичность ТО
 - 5.2.1 Техническое обслуживание изделия включает в себя следующие работы:
 - технический осмотр проводится не реже 1 раза в 6 месяцев;
 - периодическое техническое обслуживание проводится не реже 1 раза в год.
 - 5.3 Меры безопасности
- 5.3.1 При эксплуатации и техническом обслуживании необходимо соблюдать требования «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей».
 - 5.4 Порядок технического обслуживания
 - 5.4.1 Технический осмотр
 - 5.4.1.1 Перечень работ выполняемых при ТО
- 5.4.1.1.1 При проведении технического осмотра проводят работы, приведённые в таблице 5.1

Таблица 5.1

Наименование работ	Технические требования	Примечание
Произвести внешний осмотр СЧ системы при этом:		СЧ системы приведены в п. 1.3.1, таблица 1.1
а) проверить крепление СЧ системы	СЧ системы должна быть надежно закреплены	таолица т.т
б) осмотреть внутреннее состояние монтажа БПС	монтаж должен соответствовать требованиям КД	
в) проверить надежность электрических контактных соединений	электрические контактные соединения должны быть надежны	
г) осмотреть на предмет наличия грязи и пыли	не должно быть пыли и грязи на наружных частях СЧ системы	
д) проверить отсутствие ме- ханических повреждений и состояние ЛКП (БПС)	не должно быть сколов, вмятин и ржавчины	
Проверить надежность заземления системы	провод заземления не должен иметь повреждений, контакт не должен быть подвижным	
Проверить качества защитного заземления системы	измеренные значения сопротивления не должны превышать 0,05 Ом	Ф4103-1М
Проверить работоспособность	СЧ системы должны функционировать в соответствии с п.п. 4.2.1, 4.2.2	
Результаты ТО должны быть занесены в паспорт системы		

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и д

Изм Лист № докум. Подп. Дата

ПРГА.000509.00 РЭ

- 5.4.1.2 Порядок проведения работ
- 5.4.1.2.1 Проверка на отсутствие механических повреждений СЧ системы и состояния ЛКП БПС
- 5.4.1.2.1.1 Проверить отсутствие механических повреждений корпуса БПС, датчика, кабеля.

Проверить отсутствие:

- сколов, трещин (датчика, БПС);
- вмятин, нарушений лакокрасочного покрытия (БПС).

Проверить отсутствие повреждений изоляции кабеля.

- 5.4.1.2.1.2 Проверка отсутствия механических повреждений СЧ системы, состояния ЛКП БПС считается положительной, если:
 - отсутствуют механические повреждения корпуса БПС, датчика, кабеля;
- отсутствуют сколы, трещины (датчик и БПС), вмятины, нарушения лакокрасочного покрытия (БПС);
 - отсутствуют повреждения изоляции кабеля.
 - 5.4.1.2.2 Проверка качества защитного заземления системы
- 5.4.1.2.2.1 Проверить измерителем сопротивления заземления Ф4103-1М в соответствии с инструкцией на прибор электрическое сопротивление между контуром защитного заземления и каждой доступной прикосновению металлической нетоковедущей частью системы, которая может оказаться под напряжением.
- 5.4.1.2.2.2 Проверка по настоящему пункту считается положительной, если измеренные значения сопротивления не превышают 0,05 Ом.
 - 5.4.2 Периодическое техническое обслуживание
- 5.4.2.1 При проведении периодического осмотра проводят работы, приведённые в таблице 5.2

Таблица 5.2

дата

Подп.

№ дубл.

Инв.

инв.

Взам.

пата

z

Подп.

проп

Наименование работ	Технические требования	Примечание
Выполнить все работы при-		Таблица 6.1
веденные для ТО		
Проверить надёжность под-	кабель должен быть надёжно	
ключения кабеля к клеммным	подключен	i
разъёмам и их состояние.		
Проверить надёжность креп-	СЧ системы должны быть	
ления СЧ системы	надежно закреплены	
Проверить работоспособ-	СЧ системы должны функци-	
ность	онировать в соответствии с	
	п.п. 4.2.1, 4.2.2	
Результаты ТО должны быть		
занесены в паспорт системы		

- 5.4.3 Проверка работоспособности
- 5.4.3.1 При проведении проверки СЧ системы на работоспособность проверяется:
- правильность функционирования СЧ системы;
- соответствие технических характеристик СЧ системы требованиям КД;
- четкость работы СЧ системы (включение и отключение);
- правильность работы индикации (для серийных образцов).

мем	Лист	№ докум.	Подп.	Дата

- 6 Текущий ремонт СЧ системы
- 6.1 Общие сведения
- 6.1.1 СЧ системы рассчитано на работу в непрерывном режиме без постоянного обслуживания. Работоспособность СЧ системы оценивается в соответствии с п.п. 4.1.2, 4.2.2 Для СЧ системы возможны следующие типы отказов:
 - отказ (повреждение) датчика;
 - отказ генератора;
 - обрыв кабеля;
 - отказ ИП и др.
- 6.1.2 Ремонт СЧ системы производится заменой неисправной СЧ системы, определенной по внешним признакам в результате анализа её функционирования.
 - 7 Текущий ремонт СЧ системы
- 7.1 Возможные отказы СЧ системы и рекомендации по их устранению представлены в таблице 7.1

Таблица 7.1

Наименование отказа (внешнее проявление)	Возможные причины отказа	Рекомендации по поиску причины и устранению отказа
Нет сигнала на выходе ОУ DA17	Отказ ИП (Отсут- ствует 9 V DC на 7 выводе)	проверить наличие напряжения 9 V DC
Нет сигнала на входе уси- лителя	Обрыв удлини- тельного кабеля	проверить на обрыв кабель; для чего необходимо «прозвонить» кабель мультиметром; при обрыве кабеля - провести ремонт кабеля или его заменить
Нет сигнала ошибки на контактах 3 и 4 клеммника X3	Отказ генератора	проверить режимы работы ОУ (ДА7, ДА9, ДА10) и наличие напряжения питания

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм Лист № докум. Подп. Дата

ПРГА.000509.00 РЭ

- температура окружающего воздуха -35...+125 °C (датчик, удлинительный кабель);
- температура окружающего воздуха -35...+85 °C (преобразователь);
- относительная влажность воздуха не более 80 % при температуре 25 °C.
- 8.2 В помещениях для хранения содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержание коррозийно-активных агентов для атмосферы типа I по ГОСТ 15150.

9 Транспортирование

- 9.1 Транспортирование СЧ системы производится любым видом закрытого транспорта, предохраняющим СЧ от воздействия солнечной радиации, резких скачков температур, атмосферных осадков и пыли с соблюдением мер предосторожности против механических воздействий, при этом:
 - по железной дороге или водным путем на любые расстояния;
 - воздушным транспортом на любые расстояния в герметичных отапливаемых отсеках без ограничения скорости и высоты полёта;
 - по дорогам с асфальтовым или бетонным покрытием (дороги первой категории) на расстояние свыше 1000 км (по ГОСТ23216—78);
 - то булыжным (дороги 2 и 3 категории) и грунтовым дорогам на расстояние свыше 250 км со скоростью до 40 км/час, или на расстояние до 250 км с большей скоростью, которую допускает транспортное средство (по Γ OCT23216-78).

10 Утилизация

- 10.1 После окончания установленного срока службы СЧ системы подлежат демонтажу и утилизации. Специальных мер безопасности при демонтаже и утилизации не требуется. Демонтаж и утилизация не требуют специальных приспособлений и инструментов.
- 10.2 Основным методом утилизации является разборка СЧ системы. При разборке целесообразно разделять материалы по группам. Из состава СЧ системы подлежат утилизации черные и цветные металлы.

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм Лист № докум. Подп. Дата

ПРГА.000509.00 РЭ

Приложение А

СИСТЕМА ИЗМЕРЕНИЯ ВОЗДУШНОГО ЗАЗОРА РОТОР-СТАТОР

МЕТОДИКА ПОВЕРКИ

ПРИЛОЖЕНИЕ А ПРГА.000509.00 РЭ

| 100 | 100

Интервал между поверками – 3 года

1А МЕТОДИКА ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1A Таблица 1A

	Пункт методи-	Обязательность прове- дения операции при	
Наименование операции	ки поверки	первичной поверке	периоди- ческой поверке
Внешний осмотр	6A.1	+	+
Опробование	6A.2	+	+
Проверка диапазона измерения воздушого зазора и определение относительной погрешно- сти измерения зазора	6A.3	+	+
Проверка действительного значения коэффициента преобразования и его относительного отклонения от номинального значения	6A.4	+	+
Проверка нелинейности амплитудной характеристики в диапазоне измерений зазора	6A.5	+	+
Проверка частоты выходного сигнала генератора	6A.6	+	+
Проверка потребляемой мощности	6A.7	+	-

2А СРЕДСТВА ПОВЕРКИ

дата

z

Подп.

дубл.

ž

Инв.

инв.

Взам.

дата

z

Подп.

При проведении поверки должны быть применены средства, указанные в таблице 1.5 РЭ

Все средства измерения и оборудование должны иметь действующие свидетельства о поверке или аттестации.

ЗА ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны быть соблюдены требования безопасности, указанные в руководстве по эксплуатации ПРГА. 000509.00 РЭ.

4А УСЛОВИЯ ПОВЕРКИ

Поверку системы измерения воздушого зазора проводят в нормальных условиях:

- температура окружающего воздуха $(20 \pm 5)^{\circ}$ C;
- относительная влажность окружающего воздуха от 30 до 80%;
- атмосферное давление от 84 до 106,7 кПа.

5А ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки должны быть выполнены следующие операции:

- проверка комплектности системы в соответствии с разделом 1.3 РЭ;
- выдержка поверяемой системы и средств поверки при температуре поверки в течение 2 часов.

L				
MEN	Лист	№ докум.	Подп.	Дата

6А ПРОВЕДЕНИЕ ПОВЕРКИ

6А.1 Внешний осмотр.

- 6А.1.1 При проведении внешнего осмотра должно быть установлено:
- -отсутствие механических повреждений корпуса, соединительных кабелей и электрических разъемов, влияющих на работоспособность системы измерения воздушного зазора;
- -соответствие комплектности и маркировки требованиям, установленным в руководстве по эксплуатации;
- -отсутствие загрязнений и выступающих заусенцев на контактирующих поверхностях технических средств, входящих в состав системы измерения воздушного зазора;
 - -наличие всех крепежных элементов;
 - -резьбовые части электрических разъемов не должны иметь видимых повреждений.
- 6А.1.2 Результат операции считается положительным, если выполняются все вышеперечисленные требования в п.6А.1.1.

6А.2 Опробование

дата

z

Подп.

дубл.

ž

Инв.

ž

инв.

Взам.

дата

z

Подп.

подп

6А.2.1 Собрать схему для проверки в соответствии с рисунком 1А.

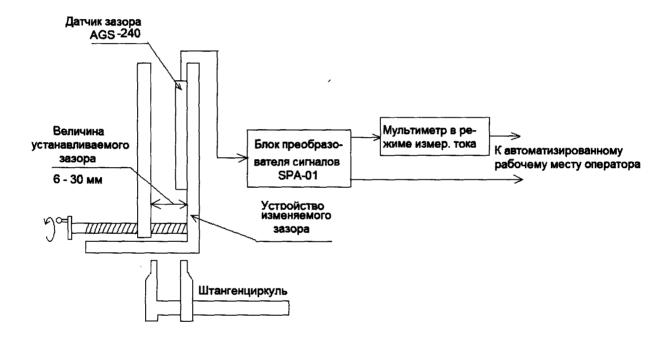


Рисунок 1A — Схема подключения системы измерения воздушного зазора ротор-статор при опробовании, проверки диапазона измерения реального зазора, действительного значения коэффициента преобразования и его относительного отклонения от номинального значения, нелинейности амплитудной характеристики в диапазоне измерения зазора

- 6A.2.2 Включить блок преобразователя сигналов SPA-01, при этом на его лицевой панели должен загореться зеленый светодиод, индицирующий подачу напряжения на блок.
- 6A.2.3 На устройстве изменяемого зазора установить сначала минимальную величину зазора, равную 6 мм. Затем увеличить ее до максимального значения- 30 мм, при этом постоянный ток на выходе блока преобразователя сигналов SPA-01 должен меняться от ≈ 4 мА при минимальном зазоре до ≈ 20 мА при максимальном. Контроль постоянного тока производить с помощью мультиметра.
- 6А.2.4 Результаты опробования считаются удовлетворительными, а поверяемая система измерения воздушного зазора ротор-статор пригодной для проведения измерений величины зазора, если при плавном увеличении величины зазора постоянный ток, измеренный мультиметром

					Γ
					l
MEN	Лист	№ докум.	Подп.	Дата	l

6А.3 Проверка диапазона измерения воздушного зазора и определение относительной погрешности измерения зазора

6А.3.1 Собрать схему для проверки в соответствии с рисунком 1А.

- 6A.3.2 Установить зазор (S_{ycm}) между пластинами на устройстве изменяемого зазора равный 6 мм и занести это значение в табл.2A. Контроль зазора производить с помощью штангенциркуля. Допускается для выставления зазора использовать калиброванные меры длинны (КМД).
- 6A.3.3 Произвести измерение величины выходного постоянного тока с помощью мультиметра. Число измерений (n) менее трех и занести их значения в табл.2.
- $6A.3.4\ \Pi o\ \phi$ ормуле (1) рассчитать среднее значение величины выходного постоянного тока ($I_{\text{вых.ср}}$), [мА]:

$$I_{sox.cp} = \frac{\sum_{i=1}^{n} I_{Bolx.i}}{n}$$
 (1)

6A.3.5 По формуле (2) рассчитать среднее значение измеренной величины зазора (S^{cucm}_{cp}), [мм]:

$$S_{cp}^{cucm} = S_{muh} + \frac{I_{ebx.cp.} - I_{muh}}{K_{mp. hom.}}$$
 (2)

где $S_{\text{мин.}} = 6$ мм — минимальное значение зазора;

 $I_{\text{мин.}}$ =4 мА - минимальное значение измеренного тока на выходе при минимальном значении зазора;

 $I_{\text{вых.ср.}}$ - среднее значение величины выходного постоянного тока[мА];

 $K_{\text{ном.}I} = (I_{\text{макс.}} - I_{\text{мин.}})/(S_{\text{макс.}} - S_{\text{мин.}}) = (20-4)/(30-6) = 0,667 \text{ мА/мм} - \text{номинальное значение коэффициента преобразования по току.}$

Полученное расчетное среднее значение величины измеренного зазора $S^{cucm}_{\ \ cp}$ занести в табл.2A.

Таблица 2А

z

Подп.

Инв. № дубл.

MHB.

Взам.

дата

Подп.

Установл.	Величина измер.выходного тока				Расчетное среднее зна-	Отн. погр.
зазор S_{ycm}	(мА)				чение величины изме-	δ_{Si} ,
(MM)	№ из	вмерения $I_{\theta \bowtie x.i}$			ренного зазора	(%)
	1	2	3	I _{sых.cp}	S^{cucm}_{cp} , (MM)	(/0)
6						
8,9						
15						
21						
25						
30						

6А.3.6 По формуле (2) рассчитать относительную погрешность измерения зазора,%:

$$\delta_{Si} = \frac{S_{cp}^{cucm.} - S_{ycm.}}{S_{ycm.}} \cdot 100 \tag{3}$$

и расчетное ее значение занести в табл.2А.

6A.3.7 Повторить операции по п.п 6A.3.2 - 6A.3.6 настоящей МП для всех заданных значений зазора в соответствии с табл. 2A и полученные результаты занести в табл. 2A.

MEN	Лист	№ докум.	Подп.	Дата

$$\delta_S = \left| \delta_{Si} \right|_{\text{max}} \tag{4}$$

6A.3.9 Результат проверки считается удовлетворительным, если диапазона измерения реального зазора составил от 6 до30 мм при относительной погрешности измерений зазора не превышающей пределов \pm 5,0%.

6А.4 Проверка действительного значения коэффициента преобразования и его относительного отклонения от номинального значения

- 6А.4.1 Собрать схему для проверки в соответствии с рисунком 1А.
- 6А.4.2 Установить зазор (S_{уст}) между пластинами на устройстве изменяемого зазора равный 6 мм и занести это значение в табл.3. Контроль производить с помощью штанген-циркуля.
- 6A.4.3 Произвести измерение тока ($I_{\text{вых.}}$). на выходе блока преобразователя сигналов SPA-01. Число измерений (n) не менее трех. Полученные значения занести в табл.3A Таблица 3A

Установл. зазор S_{ycm}	Ток на выходе SPA І _{вых} (мА)	A-01	Кпр.І,	Кпр.ср.І,	Δ_{I} ,
(MM)	№ измерения I _{вых.і}	І _{вых.ср}	мА/мм	мА/мм	%
6					
15					
30					

- 6A.4.4 По формуле (1) рассчитать среднее значение величины выходного тока ($I_{\text{вых.ср}}$) [мА] и полученные значения занести в табл.3.
- 6A.4.5 По формуле (5) рассчитать действительные коэффициенты преобразования системы измерения воздушного зазора ротор-статор по току ($K_{np,I}$):

$$K_{np,I} = \frac{I_{\text{BMX.cp.}}}{S_{\text{yct.}}}, (\text{MA/MM})$$
 (5)

и полученные значения занести в табл.3.

6A.4.6 По формуле (6) рассчитать среднее действительное значение коэффициента преобразования по току ($K_{\text{пр.ср.1}}$) для трех значений зазоров:

$$K_{np.cp.I} = \frac{K_{np.6} + K_{np.15} + K_{np.30}}{3}, \text{(MA/MM)}$$

6A.4.7 Рассчитать относительное отклонение действительного значения коэффициента преобразования от номинального значения по току(Δ_I) по формуле (7), [%]:

$$\Delta_{I} = \frac{K_{np.cp..I}^{\cdot} - K_{nom.I}}{K_{nom.I}} \cdot 100$$

$$, (\%)$$

$$(7)$$

где $K_{np.cp.I}$ - действительное среднее значение коэффициента преобразования по току, мА/мм;

 $K_{{\scriptscriptstyle HOM.I}}$ = 0,667 мА/мм — номинальное значение коэффициента преобразования по току;

и полученные значения занести в табл.3.

z	1
Подп.	
. № Инв. № дубл.	
Ž	l
Инв.	
ž	Γ
инв.	
Взам.	
Подп. и дата Взам. инв. М	
Инв. № подл.	

дата

6A.4.8 Результат испытания считается удовлетворительным, если относительное отклонение действительного значения коэффициента преобразования от номинального значения в диапазоне установленных зазоров от 6 до 30 мм не более $\pm 5.0\%$

6А.5 Проверка нелинейности амплитудной характеристики в диапазоне измерений 6А.5.1 Собрать схему для проверки в соответствии с рисунком 1А.

Нелинейность амплитудной характеристики поверяемой системы (δ_i) определяют на пяти фиксированных значениях зазора, одно из которых должно быть минимальным, другое — максимальным.

- 6A.5.2 Установить зазор (S_{ycm}) между пластинами на устройстве изменяемого зазора равный 6 мм и занести это значение в табл.4. Контроль производить с помощью штанген-циркуля.
- 6A.5.3 Произвести измерение постоянного тока ($I_{\text{вых.i}}$) на выходе блока преобразователя сигналов SPA-01 с помощью мультиметра [мА]. Число измерений (n) не менее трех. Полученные значения занести в табл.4А.

Таблица 4А

Заданное значение величины зазора	№ измерения <i>I_{емх.і},</i> мА			I _{sux.cp.}	$K_{np.I}$,	K _{np.I cp} ,	б _{Ii} ,
MM	1	2	3	мА	мА/мм	мА/мм	%
6							
8,9		Ţ					
15							
25		1				1	
30							

- 6А.5.4 Выполнить пункты 5А.5.2-6А.5.3 настоящей МП для каждого из заданных значений величины зазора согласно табл.4А. Полученные значения занести в табл.4А.
- 6A.5.5 По формуле (5) рассчитать действительные коэффициенты преобразования системы току ($K_{np.I}$) [мА/мм] и занести эти значения в табл.4А.
- 6A.5.6 Используя полученные значения ($K_{np.l}$), рассчитать среднее действительное значение коэффициента преобразования ($K_{np.lcp.}$) в заданном диапазоне величин зазоров по формуле 8, [мА/мм]:

$$K_{np.I_{cp}} = \frac{\sum_{k=1}^{n} K_{np.I}}{n}$$
(8)

где $K_{np,I}$ - действительное значение коэффициента преобразования по току при i-том значении величины зазора [мА/мм],

n=5— количество задаваемых значений величин зазоров при определении нелинейности амплитудной характеристики.

6A.5.7 Для каждого значения задаваемой величины зазора рассчитать относительное отклонение (δ_{li}) коэффициента преобразования ($K_{np.\ l}$) от среднего арифметического значения ($K_{np.\ lcp.}$) по формуле 9, %:

$$\delta_{li} = \frac{K_{np.I} - K_{np.lcp.}}{K_{np.lcp.}} \cdot 100$$

За нелинейность амплитудной (δ_l) характеристики поверяемой системы принимается максимальное абсолютное значение, рассчитанное по формуле 10, [%]:

$$\boldsymbol{\delta}_{I} = |\boldsymbol{\delta}_{Ii}|_{\text{max}} \tag{10}$$

MEN	Лист	№ докум.	Подп.	Дата

6А.6 Определение частоты выходного сигнала генератора

6А.6.1 Собрать схему для проверки в соответствии с рисунком 2А.

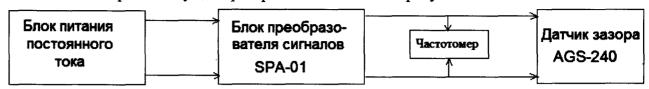


Рисунок 2A — Схема подключения системы измерения воздушного зазора ротор-статор при проверке частоты выходного сигнала генератора блока преобразователя сигналов SPA-01

- 6A.6.2 С помощью частотомера с выходных клемм генератора блока преобразователя сигналов SPA-01 снять показание частоты выходного сигнала.
- 6А.6.3 Результаты проверки считаются удовлетворительными, если частота выходного сигнала генератора блока преобразователя сигналов SPA-01 находится в пределах 195-205 кГп.

6А.7 Проверка потребляемой мощности

6А.7.1 Собрать схему для проверки в соответствии с рисунком 3А.

Рисунок 3A — Схема подключения системы измерения воздушного зазора ротор-статор при определении потребляемой мощности

- 6А.7.2 Установить питающее напряжение источника питания постоянного тока, соответствующее максимальному значению 26,4 В.
- 6А.7.3 С помощью мультиметра в режиме измерения постоянных напряжений измерить напряжение питания блока преобразователя сигналов SPA-01 (U_{num}), В.
- 6А.7.4 С помощью мультиметра в режиме измерения постоянных токов измерить потребляемый ток блока преобразователя сигналов SPA-01 (I_{num}), А.
- 6А.7.5 Рассчитать потребляемую мощность блока преобразователя сигналов поверяемой системы по формуле 11, [ВА]:

$$P_{num} = U_{num} \cdot I_{num} \tag{11}$$

6A.7.6 Результат проверки считают удовлетворительным, если потребляемая системой мощность не превышает 2,0 BA.

7А Оформление результатов поверки

7А.1 Если система по результатам поверки признана пригодной к применению, то на нее выдается «Свидетельство о поверке» по форме, установленной ПР 50.2.006-94. На оборотной стороне свидетельства записывают результаты поверки.

Подп. и дата	
в. № дубл.	
Ин	
инв. №	
Взам.	
и дата	
подп.	
№ подл.	
Инв.	i
	Подп. и дата Взам. инв. № Инв. № дубл. Подп. и

MEN	Лист	№ докум.	Подп.	Дата

					Всего	No	Входящий	Подп.	Дата
	изменен- ных	заменен- ных		аннулиро- ванных	листов (стра- ниц) в докум.	докум.	№сопроводите льного докум. и дата		
		-			-				
_									
									
								-	

Изм Лист

№ докум.

Подп.

Дата

ПРГА.000509.00 РЭ