Генеральный директор 000 Фирма «ИНФОРМТЕСТ OHOTER С.Н.Зайченко 2018 г. мультиметр цифровой цмм1 Руководство по эксплуатации ФТКС.468260.064РЭ TIPEDAID B ABOUN DESSENOF 3AMECTHTEAD TEHEPORTHORO EMPEKTOPA NO METPONOTHY Подп. B.B. CYRPYHOR дубл. Z Инв Z Взам. инв. дата 25.01.16 Z Подп. Инв. N подп 2018 Формат А4 Ф.2.702.-7а Копировал

5 Поверка

дата

Z

Настоящая методика распространяется на модуль ФТКС.468260.064 и устанавливает порядок проведения первичной и периодической поверок.

5.1 Общие требования

- 5.1.1 Поверка модуля должна проводиться организацией аккредитованной в установленном порядке на проведение данных работ.
- 5.1.2 Поверка модуля должна производиться не реже одного раза в год.
- 5.1.3 При поверке должны использоваться поверенные средства измерений, имеющие действующие свидетельства (отметки в формулярах или паспортах) о поверке.
- 5.1.4 Перед началом поверки необходимо проверить работоспособность модуля в соответствии с пунктом 1.4.2.
- 5.1.5 Модуль подвергать поверке только при положительном результате выполнения проверки его работоспособности.
- 5.1.6 При выполнении поверки модуля, для ведения протокола результатов поверки необходимо использовать файл протоколов.

Примечание - Файл протоколов «Протокол ЦММ1.xls» входит в состав комплекта программного обеспечения управляющей панели модуля. Файл протокола открывается в среде Microsoft Excel версии не ниже 97.

5.1.7 При выполнении поверки рекомендуется вести протоколы в виде файлов. Все вводимые в ПЭВМ значения величин должны быть представлены в единицах Международной системы единиц в формате с плавающей точкой.

Подп. дубл. При вводе нецелых чисел разделителем целой и дробной частей Z числа является символ «.» (точка). Инв. Разделителем мантиссы и порядка является символ (буква) «Е», либо символ (буква) «е» латинского шрифта. Z инв. Взам. 01.16 дата Z Подп. Инв. М подп. Лист Изм. Лист N докум. Подп. Дата Ф.2.702.-7а Копировал Формат А4

5.2 Операции поверки

и дата

Взам. инв. N Инв. N дубл.

и дата 25.01.16

Подп.

Инв.N подп. 6857

Ф.2.702.-7а

 $5.2.1\ \mbox{При проведении поверки должны выполняться операции указанные в таблице <math>5.1.$

		Проведение оп	ерации при
Наименование операции	Номер пункта ФТКС.468260.064РЭ	первичной поверке или после ремонта	периоди- ческой поверке
1 Внешний осмотр	5.6.1	+	+
2 Опробование	5.6.2	+	+
3 Определение метрологических характеристик:	5.6.3	+	+
3.1 Определение диапазонов и относительной погрешности измерений напряжения постоянного тока	5.6.3.1	+	+
3.2 Определение диапазонов и относительной погрешности измерений силы постоянного тока	5.6.3.2	+	+
3.3 Определение диапазонов и относительной погрешности измерений сопротивления постоянному току по двухпроводной и четырехпроводной схеме измерений	5.6.3.3	+	+
3.4 Определение диапазонов и относительной погрешности измерений среднеквадратического значения напряжения переменного тока	5.6.3.4	+	+
3.5 Определение диапазонов и относительной погрешности измерений среднеквадратического значения силы переменного тока	5.6.3.5	+	+
3.6 Определение диапазона и относительной погрешности измерений частоты периодического сигнала	5.6.3.6	+	+
3.7 Проверка контрольной суммы исполняемого кода	5.6.3.7	+	+

Копировал

Формат А4

5.3 Средства поверки

Взам. инв. N Инв. N дубл. Подп.

и дата 25.01.16

Подп.

Инв.N подп. 6857 5.3.1 При проведении поверки должны применяться средства измерений и вспомогательное оборудование указанные в таблице 5.2.

	Ta		a 5.2				
			иер пунк		Наи	менование рабочих эталонов и вспомогательных	
	Φ	TKC.	468260.0			средств поверки	
	5	.6.3	.1, 5.6. .4 - 5.6	3.2,	- ди тока отно напр 0,00 U _X - пост ГОСТ - ди тока отно напр этал - ди перен допу	средств поверки братор универсальный 9100: апазон воспроизведения напряжения постоянног от 0,05 мВ до 400 В, пределы допускаемой сительной погрешности воспроизведения яжения постоянного тока ±(0,01 + 3 U _K /U _X), где U _K - верхний предел диапазона, установленное значение напряжения оянного тока (рабочий эталон 2 разряда по 8.027-2001); апазон воспроизведения напряжения переменног от 10 мВ до 300 В, пределы допускаемой сительной погрешности воспроизведения яжения переменного тока ± 0,5 % (рабочий он 2 разряда по ГОСТ Р 8.648-2015); апазон воспроизведения постоянного и менного тока от 0,05 мА до 3 А, пределы скаемой относительной погрешности роизведения постоянного тока	
					± (0) диало посто разро пражо прямо допус	,1 + 0,015 $ I_k/I_x $), где I_k — верхний предел азона, I_x — установленное значение оянного тока (образцовое средство измерений яда по ГОСТ 8.022-91); апазон воспроизведения частоты сигнала оугольной формы от 3 Гц до 300 кГц, пределы скаемой относительной погрешности	1
					воспі	роизведения частоты сигнала ± 0,003 %	
25.01.16							
\dashv							
7					, · ,		
6857							Лист
6857	Изм.	Лист	N докум.	Подп.	Дата		Лист 38

	Изм. Лист	N докум.	Подп.	Дата		3
6857						Л
7			_	регул № 146	ированию и метрологии от 15 февраля 2016 г.)	
25.01.16				Федер	ального агентства по техническому	
91.					о 1000 МОм, класс точности 0,05 (эталон 3 да в соответствии с приложением к приказу	
				_	оизведения сопротивления постоянному току с	T
	5.6.3.	. 3	1	Магаз	ин сопротивлений Р40108: диапазон	
					ческому регулированию и метрологии от 15 ля 2016 г. № 146)	
			1	прило	жением к приказу Федерального агентства по	
]]				ости 0,02 (эталон 3 разряда в соответствии с	:
					зон воспроизведения сопротивления янному току от 0,01 Ом до 1 МОм, класс	
	5.6.3	. 3	1	Магаз	ин электрического сопротивления Р4834:	
	1			воспр ± 0,6	оизведения напряжения переменного тока ; %	
				допус	каемой относительной погрешности	
					зон воспроизведения напряжения переменного от 0 до 190 В частотой до 300 кГц, пределы	
	5.6.3	. 4		_	ратор сигналов низкочастотный ГЗ-123:	
			1	метро	логии от 15 февраля 2016 г. № 146)	
					ветствии с приложением к приказу Федеральног сства по техническому регулированию и	٠٠
]				оянному току ± 0,001 % (эталон 3 разряда в	10
				относ	ительной погрешности измерений сопротивлени	19
					пазон измерений сопротивления постоянному от 1 Ом до 100 МОм, пределы допускаемой	
			:	± 0,0	002 % (рабочий эталон по ГОСТ 8.022-91);	
					мА до 1 А, пределы допускаемой относительно шности измерений силы постоянного тока	и
	·		-		папазон измерений силы постоянного тока	بر
					да по ГОСТ Р 8.648-2015);	
					ительной погрешности измерений напряжения менного тока ± 0,01 % (рабочий эталон 2	
				от 10	мВ до 300 В, пределы допускаемой	
					пазон измерений напр <mark>яжения переменного</mark> тока	à
					рянного тока ± 0,0008 % (рабочий эталон 2 ида по ГОСТ 8.027-2001);	
				относ	ительной погрешности измерений напряжения	
		• 1			мВ до 400 В, пределы допускаемой	
	5.6.3 5.6.3			•	чиметр 3458A: пазон измерений напряжения постоянного тока	a
			.	харан	стеристики	
				-	ид по государственнои поверочнои схеме метрологические и основные техническ	и сие
		68260.0	6102 1	-	ним эталонам или всп <mark>омогательным</mark> средства ид по государственн <mark>ой поверочн</mark> ой схеме	
	Ном	ер пункт	1 a 1 '		ментирующего технические требования	K
				средс	енование рабочих эталон <mark>ов или вспомогательн</mark> ств поверки, номер документ	
	1 1					

Γ

(знак поверки).	продо	тжение та	блицы 5.2					
Вспомогательные средства поверки Термогигрометр «ИВА-6H-Д»: - диапазон измерения температуры от 0 до плюс 50 °C, погрешность ие более ± 0,5 %; - диапазон измерения давления от 30 до 110 кПа, погрешность ± 3,0 %; - диапазон измерения давления от 30 до 110 кПа, погрешность не более ± 2,5 кПа Вспомогательное оборудование Управляющая ЭВМ с внешними устройствами и следующим установленным программным обеспечением: - операционная система Windows (32-bit); - комплект программного обеспечения интерфейса VXI; 5.6.3.6 - комплект драйверов модулей Информтест Крейт VXI, соответствующий ГОСТ Р 51884-2002 Общесистемный интерфейс информационной связи ЭВМ крейта VXI, соответствующий спецификациям VPP Альянса производителей систем VXI plugsplay Примечания 1 При проведении поверки допускается применять другие средства измерений, удовлетворлющие по точности и диапазону измерения требованиям настоящего раздела. 2 При поверке должны использоваться средства измерений утвержденных типов. 3 Используемые при поверке рабочие эталоны должны быть поверены в соответствии с требованиями приказа Минпромторга России от 2 имля 2015 г. № 1815 и иметь действующее свидетельство о повери (знак поверки).	ФТКС.							
- диапазон измерения температуры от 0 до плюс 50 °C, погрешность не более ± 0,5 %; - диапазон измерения влажности (0 - 98)%, погрешность ± 3,0 %; - диапазон измерения давления от 30 до 110 кПа, погрешность не более ± 2,5 кПа Вспомогательное оборудование Управляющая ЭВМ с внешними устройствами и следующим установленным программным обеспечением: - операционная система Windows (32-bit); - комплект программного обеспечения интерфейса VXI; - комплект драйверов модулей Информтест Крейт VXI, соответствующий ГОСТ Р 51884-2002 Общесистемный интерфейс информационной связи ЭВМ крейта VXI, соответствующий спецификациям VPP Альянса производителей систем VXI plughplay Примечания 1 При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону измерения требованиям настоящего раздела. 2 При поверке должны использоваться средства измерений утвержженных типов. 3 Используемые при поверке рабочие эталоны должны быть поверены в соответствии с требованиями приказа Минпромторга России от 2 июля 2015 г. № 1815 и иметь действующее свидетельство о поверя (знак поверки).			Вспо	могательные средства поверки				
Управляющая ЭВМ с внешними устройствами и следующим установленным программным обеспечением: - операционная система Windows (32-bit); - комплект программного обеспечения интерфейса VXI; 5.6.3.6 - комплект драйверов модулей Информтест Крейт VXI, соответствующий ГОСТ Р 51884-2002 Общесистемный интерфейс информационной связи ЭВМ и крейта VXI, соответствующий спецификациям VPP Альянса производителей систем VXI рlug&play При проведении поверки допускается применять другие средства измерений, удовлетвориющие по точности и диапазону измерения требованиям настоящего раздела. 2 При поверке должны использоваться средства измерений утвержденных типов. 3 Используемые при поверке рабочие эталоны должны быть поверены в соответствии с требованиями приказа Минпромторга России от 2 июля 2015 г. № 1815 и иметь действующее свидетельство о поверя (знак поверки).	5.5.1		Термо - диа °С, п - диа погре - диа	гигрометр «ИВА-6H-Д»: пазон измерения температуры от 0 до плюс 50 огрешность не более ± 0,5 %; пазон измерения влажности (0 - 98)%, шность ± 3,0 %; пазон измерения давления от 30 до 110 кПа,				
1 При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону измерения требованиям настоящего раздела. 2 При поверке должны использоваться средства измерений утвержденных типов. 3 Используемые при поверке рабочие эталоны должны быть поверены в соответствии с требованиями приказа Минпромторга России от 2 июля 2015 г. № 1815 и иметь действующее свидетельство о поверя (знак поверки).	1 1		Управ. следу - опе - ком VXI; - ком Крейт Общест	ляющая ЭВМ с внешними устройствами и ющим установленным программным обеспечением: рационная система Windows (32-bit); плект программного обеспечения интерфейса плект драйверов модулей Информтест VXI, соответствующий ГОСТ Р 51884-2002 истемный интерфейс информационной связи ЭВМ из VXI, соответствующий спецификациям VPP	1			
	измер утвер повер от 2	1 При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону измерения требованиям настоящего раздела. 2 При поверке должны использоваться средства измерений утвержденных типов. 3 Используемые при поверке рабочие эталоны должны быть поверены в соответствии с требованиями приказа Минпромторга России от 2 июля 2015 г. № 1815 и иметь действующее свидетельство о поверке						
		-			Лис			
Изм. Лист N докум. Подп. Дата	Изм. Лист	N докум.	Подп. Дата	1	40			

5.3.2 Для управления работой модуля и снятия показаний результатов измерений при выполнении поверки должно использоваться дополнительное оборудование, включающее ПЭВМ с внешними устройствами (монитор, клавиатура, манипулятор «мышь»), крейт VXI, комплект общесистемного интерфейса (контроллер интерфейса, кабель, контроллер слота ноль), соответствующий спецификациям VPP Альянса производителей систем VXI plug&play, а также программное обеспечение, включающее ФТКС.76064-01 Мультиметр цифровой ЦММ1 Драйвер, ФТКС.66064-01 Мультиметр цифровой ЦММ1 Управляющая панель, библиотека функций VISA, соответствующая спецификациям VPP Альянса производителей систем VXI plug&play.

5.4 Требования безопасности

5.4.1 При проведении поверки должны быть соблюдены требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также изложенные в руководстве по эксплуатации на модуль.

5.5 Условия поверки и подготовка к ней

	5.5.1 При	проведении	поверки	должны	быть	соблюдены	следующие
услови	я:						

- температура окружающего воздуха, °C от 18 до 28;

- относительная влажность воздуха, %

Z

Подп.

от 65 ± 15;

- атмосферное давление, кПа (мм рт. ст.) 100 ± 4 (750 \pm 30).

5.5.2 Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- выдержать модуль в условиях, указанных в п. 5.5.1 в течение не менее 4 ч;

Z		не менее 4 ч;		
Инв. N			эрации, оговоренные в технической документаци	ии
			ва поверки по их подготовке к измерениям;	
Взам. инв. N		- выполнить опе использованию».	эрации, оговоренные в п. 2.2 «Подготовка к	
ин.		, significant sign		
зам				
m				
]		
дата	25.01.16			
и	25.0			
1 1	•			
Подп.				
Инв. М подп.	_			
z	6857			Лист
[HB]	6	Изм. Лист N докум. Подп. Д	1	41
	Ф	Изм. Лист N докум. Подп. Д 2.7027а	Дата Копировал Форм	 иат А4
			топирован Форм	141 74

- 5.6 Порядок проведения поверки
- 5.6.1 Внешний осмотр
- $5.6.1.1\ \mbox{При внешнем осмотре проверить отсутствие механических повреждений корпуса и лицевой панели модуля, а так же повреждений разъёмов и контактов.$

Результаты внешнего осмотра считать положительными, если внешний вид модуля соответствует вышеуказанным требованиям.

5.6.2 Опробование

Z

Подп.

Инв. N дубл.

z

инв.

Взам.

дата

×

Подп.

Инв. N подп.

- 5.6.2.1 Опробование изделия выполнить согласно п. 1.4.2. Результат опробования считать положительным, если при проверке изделия не было сообщений о неисправностях
 - 5.6.3 Определение метрологических характеристик
- 5.6.3.1 Определение диапазонов и относительной погрешности измерений напряжения постоянного тока выполнить в следующем порядке: подготовить приборы и принадлежности:
 - 1) мультиметр 3458А;
 - 2) калибратор универсальный 9100 (далее калибратор);
- 3) два кабеля SLK425-SI (входят в комплект мультиметра 3458A и калибратора универсального 9100);
- 4) два кабеля LK410-L (входят в комплект мультиметра 3458A и калибратора универсального 9100);

заземлить мультиметр 3458A, калибратор универсальный 9100 и крейт VXI, с поверяемым модулем, путём соединения провода заземления с болтом расположенным на задней части каждого прибора с шиной заземления;

собрать схему в соответствие с рисунком 2. Место соединения кабеля SLK425-SI с кабелем LK410-L должно находиться непосредственно на соединителе «HI» («LO») калибратора;

включить мультиметр 3458A и установить его в режим измерения напряжения постоянного тока с автоматической установкой диапазона при времени интегрирования равном 10 периодов питающей сети частотой 50 Гц;

включить калибратор и установить его в режим формирования напряжения постоянного тока;

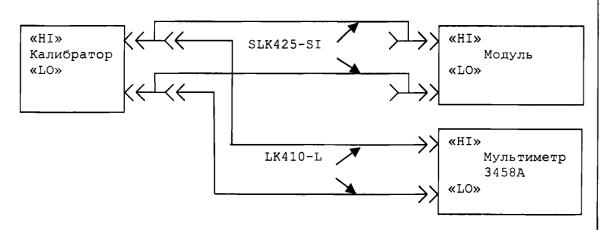


Рисунок 2 - Схема рабочего места для определения диапазонов и относительной погрешности измерений напряжения постоянного и переменного тока

определение относительной погрешности измерений напряжения постоянного тока выполнить для всех диапазонов измерений модуля и значений напряжения, указанных в графе «Устанавливаемые значения» таблицы 5.3:

1) для положительной шкалы — в точках, номинальные значения напряжения которых (U1 — U5) приведены в таблице 5.3;
2) для отрицательной шкалы — в точках, абсолютные

2) для отрицательной шкалы - в точках, аосолютные номинальные значения напряжения которых (U1 - U5) приведены в таблице 5.3.

Таблица 5.3

таслица						
				Устанавл	иваемое	Пределы допускаемой
1 ' '	1	Точка	a	значе	эние	от носительн ой
измер€	эний і	измере	пин	Значение	Единица	погрешности
					измерений	измерений, %
		U1		± 0,0500	мВ	± 7,004
		U2		± 10,0000	мВ	± 0,039
«100 ı	мВ»	U3		± 50,0000	мВ	± 0,011
		U4		± 75,0000	мВ	± 0,009
		U5		± 118,0000	мВ	± 0,007
		U1		± 0,00005	В	± 14,003
		U2		± 0,10000	В	± 0,010
≪1 B	3»	U3		± 0,50000	В	± 0,004
		U 4		± 0,750000	В	± 0,004
		U 5		± 1,180000	В	± 0,004
		U1		± 0,00050	В	± 10,002
		U2		± 1,00000	В	± 0,007
«10 I	B»	U3		± 5,00000	В	± 0,003
		Ų4		± 7,50000	В	± 0,003
	_	U5		± 11,80000	В	± 0,002
						J
 		L				
зм. Лист Т	N докум.	Подп.	Дата			
	Диапа измере «100 «1 в	Диапазон измерений и «100 мВ» «1 В»	Диапазон измерений измере	Диапазон измерения	Диапазон измерения	Диапазон измерения Точка измерения Яначение Единица измерений измерения Яначение Единица измерений измере

			ости измерений і ых пределах ука:		постоянного тока блице 5.3.	
	Резуль	таты пове	рки считать пол	ожительн ым	, отсоединить кабе: и, если значения	ли.
аблі	ице 5.3.					
иапа	азо на; выполн	ить пейст	מחת לבי (אג מעם	всех пизаз	зонов, приведенных	P
знач	ений нап				всех остальных для определяемого	
			ить действия 2) ить действия 1)		BCAY OCMARENTO	
апр.	яжение р	авное прон	зеря емой т очке	(минус U1);		
		6) устано			а отрицательное	(0
.10 Ф	obwyne (0)	MENU) = xUδ	How!/!low	\ .100 9	(6
70 A	ормуле (ить относительн	ную погрешн	ость измерений δUx	, %,
			егистрировать в ачение как Uизм		окне протокола	
	······ "DAT				ли модуля нажать	
JII G G	chine han	3) произв	вести запуск про		I (см. Приложение В	; (
24211	AUMA UST	2) з ареги ря жени я ка		еренное мул	ьтиметром 3458А	
напр	яжение р		веряемой точке		а положительное	
обра	SOM:					
	испыта				изводить следующим	
		_	АПН - включен; ество измерений	- 1 •		
		5) режим	АВВС - включен			
			га питающей сеті /ра (время интеі		- 10 ППC;	
			вон измерения -		ый диапазон;	
	yClan				нели модуля: оянного тока - «U=	=»;
	110m211	D:/m/ !! =	ірограммной упра			
		U5	± 395,0000	В	± 0,004	
. "	100 2"	U4	± 300,0000	В	± 0,003	· · · ·
	400 B»	U3	± 100,0000 ± 200,0000	В	± 0,006 ± 0,005	
		U1 U2	± 0,0050	В	± 48,004	
		U5	± 118,0000	В	± 0,004	
	«100 B»	U4	± 75,0000	В	± 0,004	
«		U3	± 50,0000	В	± 0,005	-
		U2	± 10,0000	В	± 0,010	
«	100 B»	U3		В	± 0,005	_

Взам. инв. N Инв. N дубл. Подп. и

25.01.16

Подп. и дата

Инв.N подп. 6857

Изм. Лист

Ф.2.702.-7а

N докум.

Подп.

Дата

Копировал

Формат А4

- 5.6.3.2 Определение диапазонов и относительной погрешности измерений силы постоянного тока выполнить в следующем порядке:
 - а) подготовить приборы и принадлежности:
 - 1) мультиметр 3458А;
 - 2) калибратор универсальный 9100;
- 3) два кабеля SLK425-SI (входят в комплект мультиметра 3458A и калибратора универсального 9100);
- 4) кабель LK410-L (входит в комплект мультиметра 3458A и калибратора универсального 9100);

заземлить мультиметр 3458A, калибратор универсальный 9100 и крейт VXI, с поверяемым модулем, путём соединения провода заземления с болтом расположенным на задней части каждого прибора с шиной заземления рабочего места;

- б) включить мультиметр 3458A и установить его в режим измерения постоянного тока при времени интегрирования равном 10 периодов питающей сети частотой 50 Гц;
- в) включить калибратор и установить его в режим формирования постоянного тока;
- г) определение диапазонов и относительной погрешности измерений силы постоянного тока выполнить для всех диапазонов измерений и значений тока, указанных в графе «Устанавливаемые значения» таблицы 5.4:
- 1) для положительной шкалы в точках, номинальные значения силы тока которых (I1 I5) приведены в таблице 5.4;
- 2) для отрицательной шкалы в точках, абсолютные номинальные значения силы тока которых (I1 I5) приведены в таблице 5.4.

Tэ	блина	5	Λ
ıa	CHINE	ч Э.	4

дата

Z

Подп.

инв. N Инв. N дубл.

Взам.

и дата 25.01.16

Диапазон	Точка	Устанавл значе		Пределы допускаемой относительной
измерений	измерения	Значение	Единица измерений	погрешности измерений, %
	I1	± 0,05000	мА	± 2,05
	12	± 1,00000	мА	± 0,15
«10 мА»	13	± 5,00000	мА	± 0,07
	I 4	± 7,50000	мА	± 0,06
	15	± 11,80000	мА	± 0,06
	I1	± 0,5000	мА	± 1,04
	12	± 10,0000	мА	± 0,09
«100 мА»	13	± 50,0000	мА	± 0,05
	I 4	± 75,0000	мА	± 0,05
	15	± 118,0000	Ам	± 0,04
	I1	± 0,00500	А	± 2,13
	12	± 0,10000	A	± 0,23
«1 A»	13	± 0,50000	A	± 0,15
	I 4	± 0,75000	A	± 0,14
	15	± 1,18000	A	± 0,14

Продолжение	таблицы 5.4			
	11	± 0,0500	A	± 1,98
	12	± 1,0000	A	± 0,78
«3 A»	13	± 2,0000	A	± 0,75
	I 4	± 2,5000	A	± 0,75
	15	± 3,0000	A	± 0,74

- д) установить на программной управляющей панели модуля:
 - 1) режим измерения силы постоянного тока «I=»;
 - 2) диапазон измерения определяемый диапазон;
 - 3) частота питающей сети 50 Гц;
 - 4) апертура (время интегрирования) 10 ППС;
 - 5) режим АПН включен;

дата

Подп.

дубл.

MHB. N

Z

Взам.

Z

Подп.

Инв. N подп.

25.01.16 дата

- 6) количество измерений 1;
- е) определение относительной погрешности измерений силы постоянного тока для значений тока, не превышающих 1 А, выполнить в следующем порядке:
- 1) собрать схему рабочего места в соответствие с рисунком 3;

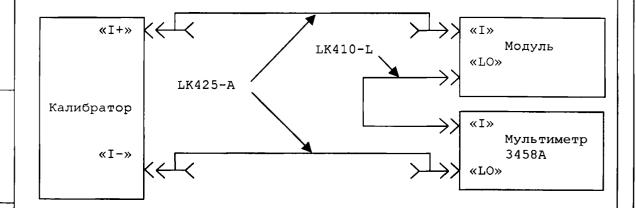


Рисунок 3 - Схема рабочего места определения диапазонов и относительной погрешности измерений силы постоянного тока до 1 А

- 2) установить на выходе калибратора положительный ток равный проверяемой точке (+I1);
- 3) установить на мультиметре 3458А диапазон, обеспечивающий наилучшую точность измерения в проверяемой точке;
- 4) зарегистрировать измеренное мультиметром 3458А значение силы тока как Ізд;
- 5) на программной управляющей панели модуля нажать клавишу
- «ЗАПУСК», зарегистрировать измеренное модулем значение как Іизм;
- 6) вычислить относительную погрешность измерения силы постоянного тока δΙх по формуле (7)

857				_				Лист
89								46
	Изм.	Лист	N докум.	Подп.	Дата			40
Φ.	2.702.	7a		_		Копировал	Формат А	A4

$$\delta Ix = (|Ix - Ix|/|x) \cdot 100 %,$$
 (7)

- 7) установить на выходе калибратора отрицательный ток равный проверяемой точке (минус I1);
 - 8) повторить действия 4) 6);
- 9) повторить действия 2) 8) для всех остальных значений силы тока, приведенных в таблице 5.4 для проверяемого диапазона, не превышающих значения 1 А;
- ж) определение силы постоянного тока для значений тока, превышающих 1 А, выполнить в следующем порядке:
 - 1) собрать рабочее место в соответствии с рисунком 4;

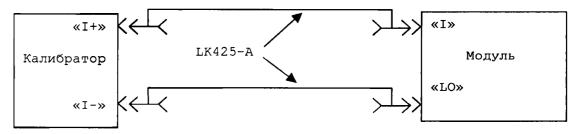


Рисунок 4 - Схема определения диапазонов и относительной погрешности измерений силы постоянного тока от 1 до 3 А и силы переменного тока от 0 до 3 А

							гь на выходе калибратора ток равный				
дата				3) на п	рогр	и зарегистрировать его как Ізд; аммной управляющей панели модуля нажать стрировать измеренное модулем значение как				
\mathbf{z}		Ins		,	,						
Подп.		пос	поя	нного то	κα δΙχ	к по	относительную погрешность измерения силы формуле (7); вы на выходе калибратора отрицательное				
Ę.				ие то ка к Ізп:	равное	опр	еделяемой точке (минус I1) и зарегистрировать				
инв. N дубл.		сил	ы т	6 7 эка, пре) повт вышающ	ориті цих 1	р действия 3), 4); р действия 2) – 6) для остальных значений А, приведенных в таблице 5.4 для				
Взам. инв. N		вт	проверяемого диапазона; з) выполнить действия е) - з) для всех диапазонов, приведенных в таблице 5.4. и) по окончанию испытаний выключить приборы, отсоединить кабели. Результаты поверки считать положительными, если значения								
подп. и дата	25.01.16		осиз	гельной	погреш	іност	считать положительными, если значения и измерений силы постоянного тока находятся в занных в таблице 5.4.				
гивым подп.	6857						Ли				
9	Ť	Изм	Лист	N докум.	Подп.	Дата	4				
3	1.4	111E+ -			і тіодіі.	1 Дата					

- 5.6.3.3 Определение диапазонов и относительной погрешности измерений сопротивления постоянному току по двухпроводной и четырехпроводной схеме измерений выполнить в следующем порядке:
 - а) подготовить приборы и принадлежности:
 - 1) мультиметр 3458А;
- 2) магазин электрического сопротивления Р4834 (далее магазин сопротивлений Р4834);
 - 3) магазин сопротивлений Р40108;
 - 4) два кабеля SLK425-SI;
 - 5) два кабеля LK410-L;
 - 6) два кабеля LK425-A;
 - б) заземлить приборы;
- в) собрать рабочее место в соответствии с рисунком 5. При помощи кабелей SLK425-SI соединить между собой клеммы на модуле:
 - 1) «HI» и «Ω 4W HI»;
 - 2) «LO» и «Ω 4W LO».
- г) при помощи кабелей LK425-A соединить между собой клеммы на мультиметре 3458A:
 - 1) «HI» и « Ω SENSE (4WIRE) HI»;
 - 2) «LO» и «Ω SENSE (4WIRE) LO»;

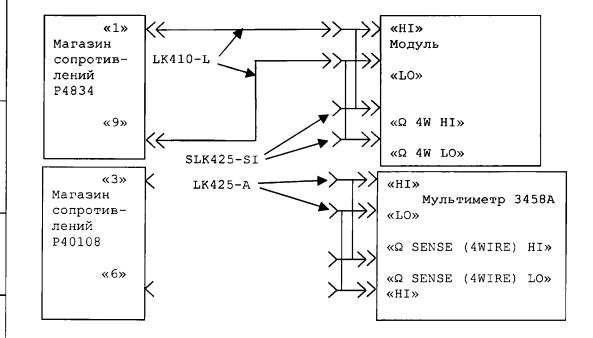


Рисунок 5 - Схема рабочего места определения диапазонов и относительной погрешности измерений сопротивления постоянному току по четырехпроводной схеме измерений

д) включить мультиметр 3458A и установить его в режим измерения сопротивления по четырёхпроводной схеме с автоматической установкой диапазона при времени интегрирования равном 10 периодов питающей сети частотой 50 Гц;

Изм. Лист N докум. Подп. Дата

48

Ф.2.702.-7а

дата

Z

Подп.

N дубл.

Инв.

инв. N

Взам.

Z

Подп.

Инв.N подп. 6857

Копировал

Формат А4

е) определение диапазонов и относительной погрешности измерений сопротивления постоянному току по четырёхпроводной схеме измерения выполнять для всех диапазонов измерений модуля и всех значений сопротивления, указанных в графе «Устанавливаемые значения» таблицы 5.5. Определение диапазонов и относительной погрешности измерений сопротивления постоянному току по двухпроводной схеме измерения выполнить для всех диапазонов измерений модуля в точках измерения R1 и R5 каждого диапазона из таблицы 5.5.

Алгоритм определения диапазонов и относительной погрешности измерений сопротивления постоянному току по четырёхпроводной схеме измерений приведен в действиях \mathbf{x}) - \mathbf{n}).

Алгоритм определения диапазонов и относительной погрешности измерений сопротивления постоянному току по двухпроводной схемы измерений приведен в действиях м), н);
Таблица 5.5

		Устанавл		Пределы допускаемо
Диапазон	Точка	знач		относительной
измерений	измерения	Значение	Единица измерений	погрешности измерений, %
	R1	10,0000	Ом	± 0,048
	R2	20,0000	Ом	± 0,028
«100 Ом»	R3	50,0000	Ом	± 0,016
(100 Olin)	R4	75,0000	Ом	± 0,013
	R5	118,0000	Ом	± 0,011
- -	R1	0,10000	кОм	± 0,018
	R2	0,20000	кОм	± 0,013
«1 кОм»	R3	0,50000	кОм	± 0,010
	R4	0,75000	кОм	± 0,009
	R5	1,18000	кОм	± 0,009
	R1	1,00000	кОм	± 0,018
	R2	2,00000	кОм	± 0,013
«10 кОм»	R3	5,00000	кОм	± 0,010
	R4	7,50000	кОм	± 0,009
	R5	11,80000	кОм	± 0,009
<u> </u>	R1	10,0000	кОм	± 0,018
	R2	20,0000	кОм	± 0,013
«100 кОм»	R3	50,0000	кОм	± 0,010
	R4	75,0000	кОм	± 0,009
	R5	118,0000	кОм	± 0,009
	R1	0,10000	МОм	± 0,018
	R2	0,20000	МОм	± 0,013
«1 МОм»	R3	0,50000	МОм	± 0,010
	R4	0,75000	МОм	± 0,009
	R5	1,18000	МОм	± 0,009
	R1	1,00000	МОм	± 0,036
	R2	2,00000	МОМ	± 0,036
«10 МОм»	R3	5,00000	МОМ	± 0,035
	R4	7,50000	МОм	± 0,035
	R5	11,80000	МОм	± 0,035
«100 МОм»	R1	10,0000	МОм	± 0,801

Копировал

Лист 49

Формат А4

дата

Z

Инв. N дубл.

HHB. N

Взам.

Подп.

Инв. N подп.

Ф.2.702.-7а

Изм. Лист N докум. Подп.

и дата 25.01.16

R2	20,0000	МОм	± 0,801
R3	50,0000	МОм	± 0,800
R4	75,0000	МОм	± 0,800
R5	100,0000	МОМ	± 0,800

- ж) установить на программной управляющей панели модуля:
- 1) режим измерений сопротивления постоянному току по четырёхпроводной схеме измерения - «R4пр»;
 - 2) диапазон измерений определяемый диапазон;
 - 3) частота питающей сети 50 Гц;
 - 4) апертура (время интегрирования) 10 ППС;
 - 5) режим АПН включен;
 - 6) количество измерений 1;
- з) определение в точках R1 R5 диапазонов измерений «100 Ом», «1 кОм» и «10 кОм», а также в точках R1 - R4 с верхним пределом измерений 100 кОм выполнить в следующем порядке:
- 1) подключить кабели LK410-L к магазину сопротивлений P4834;
- 2) установить на магазине сопротивлений Р4834 значение сопротивления равное проверяемой точке (R1);
- 3) подсоединить свободные концы кабелей LK410-L, к гнёздам соединителей кабелей LK425-A, подключённых к входам «HI» и «LO» мультиметра 3458A;
- 4) измерить мультиметром 3458A, установленное на магазине сопротивлений значение сопротивления и зарегистрировать его как Кэд;
- 5) отсоединить кабели LK410-L от гнёзд соединителей кабелей LK425-A, подключённых к входам «HI» и «LO» мультиметра 3458A, и подсоединить их к гнёздам соединителей кабелей SLK425-SI, подключённых к входам «НІ» и «LO» модуля;
- 6) на программной управляющей панели модуля нажать клавишу «ЗАПУСК», зарегистрировать измеренное значение как Rизм;
- 7) вычислить относительную погрешность измерений сопротивления постоянному току бЯх, %, по формуле (8)

$$\delta Rx = (|Rusm - Rsg|/Rsg) \cdot 100 \%, \tag{8}$$

- 8) отсоединить кабели LK410-L от гнёзд соединителей кабелей SLK425-SI, подключённых к входам «НІ» и «LO» модуля;
- 9) повторить действия 1) 8) для остальных значений сопротивления, приведенных в таблице 5.5 для определяемого диапазона;
- и) определение диапазона с верхним пределом 100 кОм в точке R5 (118 кОм) выполнить в следующем порядке:
- 1) соединить последовательно магазины сопротивлений Р4834 и Р40108, для чего соединить при помощи штатного кабеля из комплекта поставки мультиметра 3458A клемму «9» магазина сопротивлений Р4834 с клеммой «3» магазина сопротивлений Р40108;
- 2) подключить один кабель LK410-L к клемме «1» магазина сопротивлений Р4834, а другой кабель LK410 - к клемме «6» магазина сопротивлений Р40108;
 - 3) установить:

дата

Z

дубл.

Ż

Инв.

Z

инв.

Взам.

дата 25.01.16

×

Подп.

Инв. N подп.

Φ	2.702.	-7a				Копировал	Формат А	4
		Лист	N докум.	Подп.	Дата			50
9	L							50
6857							J	Лист
		.			, 			
1	1							

- на магазине сопротивлений Р40108 значение сопротивления равное 100 кОм; - на магазине сопротивлений Р4834 значение сопротивления равное 18 кОм; 4) выполнить действия 3) - 8) перечисления з); к) определение диапазонов измерений «1 МОм», «10 МОм», «100 МОм» в точках R1 - R5, выполнить следующей последовательности образом: 1) подключить измерительные кабели к магазину сопротивлений Р40108. Во время проведения проверки клемма «Э» (Экран) магазина сопротивлений должна быть заземлена; 2) установить на магазине сопротивлений Р40108 значение сопротивления равное проверяемой точке (R1); 3) выполнить действия 3) - 8) перечисления з); 4) повторить действия 1) - 3) для остальных значений сопротивления, приведенных в таблице 5.5 для определяемого диапазона; л) выполнить действия перечислений е) - и) для диапазонов, приведенных в таблице 5.5; м) для определения диапазонов и относительной погрешности измерений сопротивления постоянному току по двухпроводной схеме измерения собрать рабочее место в соответствии с рисунком 6; «HI» «1» Модуль Магазин «LO» сопротив-LK410-L лений P4834 «Ω 4W HI» дата «9» «Ω 4W LO» z Подп. «3» «HI» LK425-A = Магазин Мультиметр 3458А дубл. сопротив-«LO» лений z P40108 «Ω SENSE (4WIRE) HI» Инв. «6» «Ω SENSE (4WIRE) LO» z «HI» MHB. Взам. Рисунок 6 - Схема рабочего места определения диапазонов и относительной погрешности измерений сопротивления постоянному току по дата 25.01.16 двухпроводной схеме измерения н) выполнить действия перечислений е) - к), для всех Z диапазонов, приведенных в таблице 5.5, при этом: Подп. Инв. N подп. Лист 51 Изм. Лист N докум. Подп. Дата Ф.2.702.-7а Копировал Формат А4

- 1) при выполнении действия 1) перечисления е) установить режим измерения сопротивления постоянному току по двухпроводной схеме измерения «R2пр»;
 - 2) определение выполнить только в точках R1 и R5;
- 3) для измерений сопротивления модулем свободные концы кабелей LK410-L подключать непосредственно к соединителям «HI» и «LO» модуля;
- о) по окончанию испытаний выключить приборы, отсоединить кабели.

Результаты поверки считать положительными, если значения относительной погрешности измерений сопротивления постоянному току по двухпроводной и четырехпроводной схеме измерений находятся в допускаемых пределах указанных в таблице 5.5.

- 5.6.3.4 Определение диапазонов и относительной погрешности измерений среднеквадратического значения напряжения переменного тока выполнить в следующем порядке:
 - а) подготовить приборы и принадлежности:
 - 1) мультиметр 3458А;
 - 2) калибратор универсальный 9100;
 - 3) генератор сигналов низкочастотный Г3-123 (далее -

генератор);

дата

Z

дубл.

z

Инв.

z

инв.

Взам.

дата

Z

- 4) кабель HY-SLS425 UNC4.853.438;
- 5) два кабеля SLK425-SI;
- 6) два кабеля LK410-L;
- 7) два кабеля LK425-A;
- б) заземлить приборы;
- в) включить мультиметр 3458A и установить его в режим измерения напряжения переменного тока со следующими установками: метод измерения синхронный, фильтр включен;
- г) включить калибратор и установить его в режим формирования напряжения переменного тока, включить генератор;
- д) для всех значений напряжения, кроме тех, для которых в таблице 5.6 рядом с допуском стоит звёздочка (*), собрать схему рабочего места в соответствии с рисунком 2. Место соединения кабеля LK425-A с кабелем LK410-L должно находиться непосредственно на соединителе «HI» («LO») калибратора;
- е) для всех значений напряжения до 20 В включительно, для которых в таблице 5.6 рядом с допуском стоит звёздочка (*), собрать схему рабочего места в соответствии с рисунком 7. Соединение генератора с модулем выполнить при помощи кабеля HY-SLS425, при этом для всех значений напряжения до 2 В включительно подключение кабеля HY-SLS425 к выходу генератора производить через внешний делитель «1:100», а для всех значений напряжения от 2,1 до 20 В включительно через внешнюю нагрузку 50 Ом (делитель и нагрузка входят в комплект поставки генератора). При этом переключатель «Нагрузка» генератора должен быть установлен в положение «Откл».

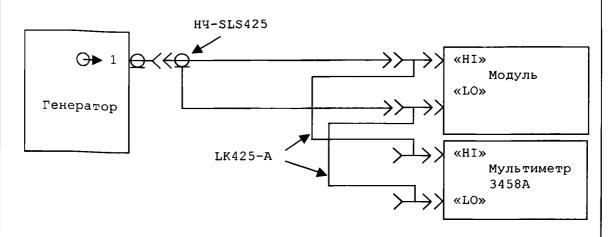



Рисунок 7 - Схема рабочего места определения диапазонов и относительной погрешности измерений среднеквадратического значения напряжения переменного тока при помощи генератора при напряжении проверки до 20 В включительно

Для всех значений напряжения свыше 20 В, для которых в таблице 5.6 рядом с допуском стоит звёздочка (*), собрать схему рабочего места в соответствии с рисунком 8. При этом переключатель «Нагрузка» генератора должен быть установлен в положение «5000», а внешняя нагрузка должна быть отключена.

N дубл.

Инв Z

Взам.

дата

z

Подп.

напряжения переменного тока при помощи генератора при напряжении проверки свыше 20 В

ж) определение диапазонов и относительной погрешности измерений среднеквадратического значения напряжения переменного тока выполнить для всех диапазонов измерений модуля, а также значений напряжения, указанных в графе «Устанавливаемые значения» таблицы 5.6, на указанных частотах.

Инв. И подп.									
Z	857								Лист
HB.]	9								53
И		Изм.	Лист	N докум.	Подп.	Дата			
	Φ.	2.702.	-7a				Копировал	Формат /	44

Алгоритм испытаний для одного диапазона приведен в действиях $\mathbf{3}$), \mathbf{u});

Таблица 5.6

Z

Подп.

Инв. N дубл.

z

инв.

Взам.

дата

z

Инв.N подп. 6857

	змерения	Устанав- ливаемое значение			Преде	лы до	пуска		относи ерений,		й погр	решност	LN
\ <u>\</u>	4ep				при частоте								
Диапазон измерений	2	Значение	изм.	Гц	Гц	лд с	к Гц	кГц	кГц	кГц	кГц) кГц	кги
Диа изм	Точка	Зна	Eл.	8	S	10	11K	01	20	30	50	100	300
	U 1	10,0000	мВ	± 2,6*	± 2,6*	± 0,45	± 0,45	± 0,45	± 0,61	± 0,61	± 1,4	± 10,0	± 10,0*
	บ2	20,0000	мВ	± 2,3*	± 2,3*	± 0,25	± 0,25	± 0,25	± 0,36	± 0,36	± 1,0	± 7,5	± 7,5*
×100мВ»	บ3	50,0000	мВ	± 2,1*	± 2,1*	± 0,13	± 0,13	± 0,13	± 0,21	± 0,21	± 0,8	± 6,0	± 6,0*
ii I	U4	75,0000	мВ	± 2,1*	± 2,1*	± 0,10	± 0,10	± 0,10	± 0,18	± 0,18	± 0,7	± 5,7	± 5,7*
	υ5	118,0000	мВ	± 2,1*	± 2,1*	± 0,08	± 0,08	± 0,08	± 0,15	± 0,15	± 0,7	± 5,4	± 5,4*
	U1	0,10000	В	± 2,6*	± 2,6*	± 0,35	± 0,35	± 0,35	± 0,61	± 0,61	± 1,4	± 10,0	± 10,0*
	บ2	0,20000	В	±2,3*	±2,3*	± 0,20	± 0,20	± 0,20	± 0,36	± 0,36	± 1,0	7,5	± 7,5*
«1B»	บ3	0,50000	В	± 2,1*	± 2,1*	± 0,11	± 0,11	± 0,11	± 0,21	± 0,21	± 0,8	± 6,0	± 6,0*
	U4	0,75000	В	± 2,1*	± 2,1*	± 0,09	± 0,09	± 0,09	± 0,18	± 0,18	± 0,7	± 5,7	± 5,7*
	Ų5	1,18000	В	± 2,1*	± 2,1*	± 0,08	± 0,08	± 0,08	± 0,15	± 0,15	± 0,7	± 5,4	± 5,4*
	U1	1,00000	В	± 2,6*	± 2,6*	± 0,35	± 0,35	± 0,35	± 0,61	± 0,61	± 1,4	±10,0	± 10,0*
	U2	2,00000	В	± 2,3*	± 2,3*	± 0,20	± 0,20	± 0,20	± 0,36	± 0,36	± 1,0	± 7,5	± 7,5*
«10B»	U3	5,00000	В	± 2,1*	± 2,1*	± 0,11	± 0,11	± 0,11	± 0,21	± 0,21	± 0,8	± 6,0	± 6,0*
	Ų4	7,50000	В	± 2,1*	± 2,1*	± 0,09	± 0,09	± 0,09	± 0,18	± 0,18	± 0,7	± 5,7	± 5,7*
	บ5	11,80000	В	± 2,1*	± 2,1*	± 0,08	± 0,08	± 0,08	± 0,15	± 0,15	± 0,7	± 5,4	± 5,4*
	U1	10,0000	В	± 2,6*	± 2,6*	± 0,35	± 0,35	± 0,35	± 0,61	± 0,61	± 1,4	± 10,0	± 10,0*
	U2	20,0000	В	± 2,3*	± 2,3*	± 0,20	± 0,20	± 0,20	± 0,36	± 0,36	± 1,0	± 7,5	± 7,5*
«100B»	U3	75,0000	В	-	-	± 0,09	± 0,09	± 0,09	± 0,18	± 0,18	± 0,7	± 5,7	± 5,7*
	U4	100,0000	В	-	-	± 0,08	-	_	-	-	± 0,7	± 5,5	
	υ5	118,0000	В	_	_		± 0,08	± 0,08	± 0,15	± 0,15	_	_	-
		150,0000	В			-	± 0,23	± 0,23	± 0,42	± 0,42	± 1,1*	± 8,0*	_
		190,0000	В	-	-	-	± 0,19	± 0,19	± 0,36	± 0,36	± 1,0*	± 7,4*	-
	บ3	290,0000	В	ı	-	_	± 0,14	± 0,14	± 0,28	± 0,28	-	-	-

установить на программной управляющей панели модуля:

- 1) режим измерения напряжения переменного тока «U~»;
- 2) диапазон измерений определяемый диапазон;
- 3) полоса ФНЧ:
 - для частоты до 100 Гц 3 Гц 300 кГц;
 - для частоты свыше 100 Гц 20 Гц 300 кГц;
- 4) частота питающей сети 50 Гц;
- 5) количество измерений 1;

определение диапазона в точках U1-U5 проводить в следующем порядке:

1) установить в мультиметре 3458А диапазон, обеспечивающий наилучшую точность измерений в проверяемой точке.

2) установить на выходе источника (калибратора или генератора) напряжение переменного тока синусоидальной формы среднеквадратическое значение, которого равно определяемой точке (U1). Установку напряжения до 2 В включительно на выходе генератора выполнить с учётом подключённого к выходу генератора внешнего делителя «1:100». Установить частоту напряжения равной определяемому значению;

857								Лис
Ğ								54
	Изм.	Лист	N докум.	Подп.	Дата			J4
Φ	2.702.	-7a	-	ř		Копировал	Формат	A4

- 3) контролируя напряжение на выходе источника при помощи мультиметра 3458A, дождаться установки требуемого значения. Зарегистрировать измеренное модулем значение напряжения как Uзд;
- 4) на программной управляющей панели модуля нажать клавишу «ЗАПУСК», зарегистрировать измеренное модулем значение как Иизм;
- 5) д) вычислить относительную погрешность измерений среднеквадратического значения напряжения переменного тока δUx , %, по формуле (9)

$$\delta Ux = (|Uusm - Usg|/Usg) \cdot 100 \%, \tag{9}$$

ВНИМАНИЕ: ЕСЛИ ПРИ ОПРЕДЕЛЕНИИ ВЕРХНЕГО ПРЕДЕЛА ДИАПАЗОНА ИЗМЕРЕНИЙ «100 МВ» НА ЧАСТОТАХ ОТ 10 ГЦ ДО 100 КГЦ ОБНАРУЖЕНА ТОЧКА (ИЛИ ТОЧКИ), ПОГРЕШНОСТЬ ИЗМЕРЕНИЙ В КОТОРОЙ ПРЕВЫШАЕТ УСТАНОВЛЕННЫЕ ПРЕДЕЛЫ, И ПРИ ЭТОМ ИЗМЕРЕННОЕ МОДУЛЕМ ЗНАЧЕНИЕ НАХОДИТСЯ БЛИЖЕ К УСТАНОВЛЕННОМУ НА ВЫХОДЕ КАЛИБРАТОРА, ЧЕМ ИЗМЕРЕННОЕ МУЛЬТИМЕТРОМ 3458A, НЕОБХОДИМО ПРОИЗВЕСТИ ПОВТОРНЫЕ ИСПЫТАНИЯ В ЭТОЙ ТОЧКЕ СЛЕДУЮЩИМ ОБРАЗОМ: ВЫПОЛНИТЬ ДЕЙСТВИЯ А) — Д), ПРИ ЭТОМ ПЕРЕД ВЫПОЛНЕНИЕМ ДЕЙСТВИЯ В) ОТСОЕДИНИТЬ КАБЕЛИ SLK425-SI ОТ СОЕДИНИТЕЛЕЙ «НІ», «LO» МОДУЛЯ, А ПЕРЕД ВЫПОЛНЕНИЕМ ДЕЙСТВИЯ Г) ВНОВЬ ПОДСОЕДИНИТЬ ИХ К ЭТИМ СОЕДИНИТЕЛЯМ. ЕСЛИ ПОСЛЕ ЭТОГО ВЫЧИСЛЕННОЕ ЗНАЧЕНИЕ ДИХ НАХОДИТСЯ В ПРЕДЕЛАХ, УКАЗАННЫХ В ГРАФЕ «ДОПУСКАЕМАЯ АБСОЛЮТНАЯ ПОГРЕШНОСТЬ ИЗМЕРЕНИЙ» ТАБЛИЦЫ 5.6, РЕЗУЛЬТАТ ИСПЫТАНИЙ В ДАННОЙ ТОЧКЕ СЧИТАЕТСЯ ПОЛОЖИТЕЛЬНЫМ!

- 6) повторить действия 1) 5) для всех остальных значений частоты, приведенных в таблице 5.6 для определяемого диапазона на установленном напряжении. При этом, при выполнении действия б) следует установить определяемое значение частоты, не меняя напряжения;
- 7) повторить действия 1) 5) для всех остальных значений напряжения, приведенных в таблице 5.6 для определяемого диапазона;

выполнить действия ж) – и) для всех диапазонов, приведенных в таблице 5.6;

по окончанию испытаний выключить приборы, отсоединить кабели. Результаты поверки считать положительными, если значения относительной погрешности измерений среднеквадратического значения напряжения переменного тока находятся в допускаемых пределах указанных в таблице 5.6.

- 5.6.3.5 Определение диапазонов и относительной погрешности измерений среднеквадратического значения силы переменного тока Определение диапазонов и относительной погрешности измерений среднеквадратического значения силы переменного тока выполнить в следующей последовательности:
 - а) подготовить приборы и принадлежности:

Z

дубл.

Z

Z

инв.

Взам.

Z

Подп.

Инв. N подп.

дата .01.16

- в) включить калибратор и установить его в режим формирования переменного тока;
 - г) собрать схему рабочего места в соответствие с рисунком 4;
- д) определение диапазонов и относительной погрешности измерений среднеквадратического значения силы переменного тока выполнить для всех диапазонов измерений модуля, а также значений напряжения, указанных в графе «Устанавливаемые значения» таблицы 5.7, на указанных частотах.

Алгоритм испытаний для одного диапазона приведен в действиях e), x);

Таблица 5.7

дата

Z

Подп.

дубл.

Инв. N.

Z

инв.

Взам.

дата

и

Подп.

Инв. N подп.

01.16

Таолица					
			ОТ	лы допус носитель: эсти изме	юй
Z, T	1,4	Устанавливаемое	П	ри часто	re
Диапазон измерений	Точка измерения	значение, А	10 Гц	1 кГц	5 кГц
	I1	0,10000	± 0,6	± 0,8	± 0,8
	12	0,20000	± 0,4	± 0,6	± 0,6
	I3	0,50000	± 0,2	± 0,5	± 0,5
«1 A»	Ι4	0,75000	± 0,2	± 0,5	± 0,5
	I5	1,15000	± 0,2	± 0,4	± 0,4
	I1	0,30000	± 1,4	± 1,6	± 1,6
	12	0,75000	± 1,0	± 1,2	± 1,2
	13	1,00000	± 0,9	± 1,2	± 1,2
«3 A»	I4	2,00000	± 0,8	± 1,1	± 1,1
	15	2,90000	± 0,8	± 1,1	± 1,1

установить на программной управляющей панели модуля:

- 1) режим измерения силы переменного тока «I~»;
- 2) диапазон измерений определяемый диапазон;
- 3) полоса ФНЧ:
 - для частоты до 100 Гц 3 Гц 300 кГц;
 - для частоты свыше 100 Гц 20 Гц 300 кГц;
- 4) частота питающей сети 50 Гц;
- 5) количество измерений 1;

определение диапазона в точках I1-I5 выполнить следующим образом:

- 1) установить на выходе калибратора переменный ток синусоидальной формы, среднеквадратическое значение силы тока которого равно определяемой точке (I1). Зарегистрировать значение силы тока как Ізд. Установить частоту тока равной определяемому значению;
- 2) на программной управляющей панели модуля нажать клавишу «ЗАПУСК», зарегистрировать измеренное модулем значение как Іизм;

_							
857							Ли
89							
	Изм.	Лист	N докум.	Подп.	Дата) 3
$\overline{}$						**	

Ф.2.702.-7а Копировал Формат А4

3) вычислить относительную погрешность измерений среднеквадратического значения силы переменного тока δ Ix, \$, по формуле (10)

$$\delta Ix = (|Insm - Isu|/|Isu) \cdot 100\%, \qquad (10)$$

- 4) повторить действия 1) 3) для остальных значений частоты, приведенных в таблице 5.7, для определяемого диапазона на установленной токе. При этом, при выполнении действия а) следует устанавливать определяемое значение частоты, не меняя значения силы тока;
- 5) повторить действия 1) -4) для остальных значений силы тока, приведенных в таблице 5.7 для определяемого диапазона; выполнить действия е), ж) для всех диапазонов, приведенных в таблице 5.7.

по окончанию испытаний выключить приборы, отсоединить кабели. Результаты поверки считать положительными, если значения относительной погрешности измерений среднеквадратического значения силы переменного тока находятся в допускаемых пределах указанных в таблице 5.7.

5.6.3.6 Определение диапазона и относительной погрешности измерений частоты периодического сигнала

Определение диапазона и относительной погрешности измерений частоты периодического сигнала выполнить в следующем порядке:

- а) подготовить приборы и принадлежности:
 - 1) калибратор;
 - 2) два кабеля SLK425-SI;
- б) заземлить приборы;

дата

z

Подп.

. И дубл.

ZHB.

инв. N

Взам.

×

Подп.

подп.

Инв. И

лата .01.16

- в) включить калибратор и установить его в режим формирования частоты;
 - г) собрать схему рабочего места в соответствие с рисунком 9;

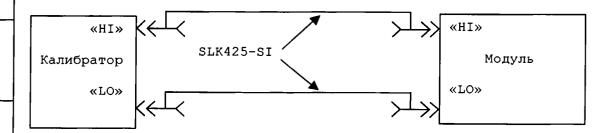


Рисунок 9 - Схема рабочего места определения диапазона и относительной погрешности измерений частоты периодического сигнала

д) определение диапазона и относительной погрешности измерений частоты периодического сигнала выполнить для всех значений частоты, указанных в графе «Устанавливаемые значения» таблицы 5.8.

Таблица 5.8

6857							Лист
	Изм.	Лист	N докум.	Подп.	Дата		57
_	2.702.				10-1-	Копировал	Формат А4

Проверяемые	Допускаемая относительная
значения частоты	погрешность измерения, %
3,000 Гц	± 0,1
8,000 Гц	± 0,05
20,000 Гц	± 0,03
100,00 Гц	± 0,03
1,0000 кГц	± 0,03
10,000 кГц	± 0,03
50,000 кГц	± 0,01
100,000 кГц	± 0,01
300,000 кГц	± 0,01

- е) установить на программной управляющей панели модуля:
 - 1) режим измерения частоты «F»;
 - 2) диапазон напряжения «10 В»;
 - 3) частота питающей сети 50 Гц;
 - 4) апертура 1 с;
 - 5) количество измерений 1;
- \mathbf{x}) проверку одного значения частоты производить следующим образом:
- 1) установить на выходе калибратора частоту равную одному из проверяемых значений, приведенных в таблице 5.8. Зарегистрировать установленное значение частоты как Гэд;
- 2) на программной управляющей панели модуля нажать клавишу «ЗАПУСК», зарегистрировать измеренное модулем значение как Fизм;
- 3) вычислить относительную погрешность измерений частоты периодического сигнала δFx , %, по формуле (11)

$$\delta Fx = (|Fusm - Fsg|/Fsg) \cdot 100 \%, \tag{11}$$

- з) выполнить действия x) для всех значений частоты, приведенных в таблице 5.8.
- и) по окончанию испытаний выключить приборы, отсоединить кабели.

Результаты поверки считать положительными, если значения относительной погрешности измерений частоты периодического сигнала находятся в допускаемых пределах указанных в таблице 5.8.

- 5.6.3.7 Проверку контрольной суммы исполняемого кода (цифрового идентификатора ПО) выполнить следующим образом:
- а) на ПЭВМ запустить программный файл InftestMD5 расположенный на CD диске «Комплект ПО модулей Информтест» Φ TKC.85001-01, поставляемом с модулем;
- б) в открывшемся окне в верхнем правом углу нажать кнопку «...» и выбрать пункт «Открыть файл»;
- в) выбрать файл «C:\VXIPNP\WINNT\BIN\undmmc1.dll» и нажать кнопку «Подсчет MD5»;
- г) в появившемся окне наблюдать номер версии и контрольную сумму. (При запуске программного «C:\VXIPNP\WINNT\BIN\undmmc1.dll»

4	2.700	~				7.0	
	Изм.	Лист	N докум.	Подп.	Дата		 28
6857	<u> </u>						50
							Лист

Ф.2.702.-7а

Подп.

М дубл.

Инв.

инв. N

Взам.

дата

z

Подп.

Инв. И подп.

01.16

Копировал

Формат А4

автоматически проверяется целостность и контрольная сумма рассчитанная по алгоритму MD5, таким образом, метрологически значимая часть защищена от несанкционированного изменения);

д) сравнить номер версии и контрольную сумму с номером версии и контрольной суммой, записанными в паспорте модуля.

Результаты проверки считать положительными, если полученные идентификационные данные программного компонента (идентификационное наименование, номер версий и цифровой идентификатор) соответствуют идентификационным данным, записанным в паспорте модуля.

- 5.7 Обработка результатов измерений
- 5.7.1 Результаты измерений заносятся в файл протокола, содержащий информацию о выполнении поверки по методике, изложенной в разделе 5.
 - 5.8 Оформление результатов поверки
 - 5.8.1 Для каждой измеряемой величины в протоколе указываются:
 - результат измерения величины;

дата

Z

Подп.

Инв. N дубл.

- значение погрешности измерений, рассчитанное при обработке результатов измерений;
- предел допускаемой погрешности для каждого измеренного значения измеряемой величины;
- результат сравнения значения погрешности измерений, рассчитанного при обработке результатов измерений, с пределами допускаемой погрешности.
- 5.8.1 Результаты поверки оформляются в соответствии с приказом Минпромторга России № 1815 от 02.07.2015 г. При положительных результатах поверки на изделие выдаётся свидетельство установленной формы. В случае отрицательных результатов поверки применение изделия запрещается, на него выдаётся извещение о непригодности к применению с указанием причин забракования.

Z инв. Взам. .01.16 дата Z Подп. Инв. N подп. Лист 59 Изм. Лист N докум. Подп. Дата Ф.2.702.-7а Копировал Формат А4