ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

Заместитель директора по развитию

УТВЕРЖДАЮ

А.С. Тайбинский 2016 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Расходомеры многофазные «SONARtrac»

Методика поверки

МП 0412-9-2016

N.P.64714-16

И.о. начальника отдела НИО-9

УМ.И. Тонконог

Тел. отдела: (843) 272-01-91

ПРЕДИСЛОВИЕ

РАЗРАБОТАНА

Федеральным государственным унитарным предприятием Всероссийским научно - исследовательским институтом

расходометрии (ФГУП «ВНИИР»)

ИСПОЛНИТЕЛИ

Левин К.А., Малышев С.Л., Шабалин А.С.

УТВЕРЖДЕНА

ФГУП «ВНИИР»

ВВЕДЕНА ВПЕРВЫЕ

Оглавление

1.	ОБЩИЕ ПОЛОЖЕНИЯ	. 4
2.	ОПЕРАЦИИ ПОВЕРКИ	. 6
3. C	РЕДСТВА ПОВЕРКИ	. 6
4. T	РЕБОВАНИЯ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	. 7
5. У	СЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ	. 7
7. Г	ІРОВЕДЕНИЕ ПОВЕРКИ	. 8
8. C	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	11

Настоящая инструкция распространяется на расходомеры многофазные «SONARtrac», изготовленные CiDRA Minerals Processing Inc. (США), и устанавливает методику их первичной и периодической поверок.

Интервал между поверками – 5 лет.

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 В настоящей инструкции использованы ссылки на следующие нормативные документы:
- Приказ Минпромторга России от 02.07.2015г. №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» (Зарегистрировано в Минюсте России 04.09.2015 № 38822).
- Приказ МинЭнерго России от 13.01.03г. №6 «Правила технической эксплуатации электроустановок потребителей».
- Приказ Министерства труда и социальной защиты РФ от 24.07.2013г. № 328н, «Правила по охране труда при эксплуатации электроустановок» (Зарегистрировано в Минюсте России 12.12.2013г. № 30593).

Расходомеры многофазные «SONARtrac» (далее – расходомеры) предназначены для измерений объёмного расхода и объёма жидкостей, жидкостных смесей, неэлектропроводных жидкостей, эмульсий и многофазных смесей (далее – измеряемая среда), с учётом компенсации по объёмному содержанию газа в измеряемой среде.

Расходомеры состоят из нескольких блоков модульного типа:

- пассивная гидроакустическая система (далее сенсорный блок);
- блок электроники.

Сенсорный блок состоит из комплекта накладных акустических датчиков, установленных в защитный кожух из стекловолокна или нержавеющей стали, который с помощью стяжных хомутов крепится накладным образом вокруг технологического трубопровода.

В соответствии с инструкциями, содержащимися в эксплуатационной документации расходомера, необходимо проводить периодический контроль и обмер проходного сечения измерительного участка трубопровода на предмет износа стенок, либо наличия внутренних отложений, а также соответствия фактических геометрических характеристик измерительного участка и физических свойств участка трубопровода и измеряемой среды параметрам настройки прибора. Периодичность этих работ определяет инженерная служба эксплуатирующей и контролирующей организации в зависимости от конкретных условий эксплуатации. После замены предприятием-изготовителем или его лицензиатом любых сборочных единиц (корпуса, кабельных вводов, кабеля и т.п.) кроме блока электроники, определяющего метрологические характеристики расходомера, поверку не проводят до истечения срока интервала между поверками. Так как

сенсорный блок является первичным преобразователем, имеет стандартные заводские настройки, может подвергаться замене в процессе эксплуатации, то для него допустимо проведение процедуры определения физических характеристик состояния модуля на предмет отсутствия механических повреждений, места его установки и их соответствия параметрам настройки блока электроники. Данная процедура осуществляется в соответствии с руководством по эксплуатации при монтаже сенсорного блока на трубопровод и после проведения поверки блока электроники.

При поверке расходомеров определение метрологических характеристик проводится только для блока электроники. Первичную поверку до ввода в эксплуатацию и после ремонта проводит организация, аккредитованная согласно Российскому законодательству в соответствующей области аккредитации.

- 1.2 Поверка блока электроники заключается в определении погрешности измерений объёмного расхода (объёма) жидкости и может производиться одним из следующих методов:
 - сличения на Государственном первичном специальном эталоне массового расхода газожидкостных смесей ГЭТ 195-2011 с эталонным массовым расходомером жидкости, входящим в его состав, с учетом показаний эталонного плотномера или эталонным расходомером, измеряющим объём;
 - сличения на рабочих эталонах расхода многофазных потоков 1-го разряда;
 - сличения на рабочих эталонах расхода жидкостей (для моделей, предназначенных для измерения объёмного расхода (объёма) жидкости, без определения содержания газовой составляющей).
- 1.3 Процедура определения метрологических характеристик блока электроники проводится с использованием сенсорного блока модели, соответствующей модели блока электроники, предназначенной для использования на измерительном участке с внешним диаметром, соответствующим внешнему диаметру измерительного участка эталона для воспроизведения измеряемой величины. При этом должны быть проведены соответствующие настройки и соблюдены все условия процедуры выполнения измерений, описанной в руководстве по эксплуатации.
- 1.4 Для моделей расходомеров, предназначенных для измерений объёмного расхода (объёма) жидкости, без определения содержания газовой составляющей, поверку производят исключительно с определением метрологических характеристик измерений объёмного расхода (объёма) жидкости.
- 1.5 При поверке расходомера, предназначенного для измерений объёмного расхода (объёма) жидкости, в том числе, объёмного содержания газа с использованием эталона, воспроизводящего единицу объёмного расхода жидкости, функция измерений объёмного содержания газа используется в качестве индикатора с соответствующей отметкой в паспорте.

2. ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, приведенные в таблице 1. Таблица 1

Наименование операции	Номер пункта документа по поверке	Проведение операции при	
		первичной поверке	периодической поверке
Проверка комплектности технической документации	6.1	Да	Да
Внешний осмотр	6.2	Да	Да
Проверка идентификационных данных программного обеспечения (ПО)	6.3	Да	Да
Опробование	6.4	Да	Да
Определение метрологических характеристик (далее – MX) расходомера	6.5	Да	Да

3. СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки должны применяться следующие эталоны:
- Государственный первичный специальный эталон единицы массового расхода газожидкостных смесей ГЭТ 195-2011 (далее первичный специальный эталон). Поверка на ГЭТ 195-2011 осуществляется с использованием сенсорного блока SONARtrac, серийный № 4000525.
- Рабочие эталоны расхода газожидкостных смесей 1-го с диапазоном воспроизводимого объёмного расхода газожидкостной смеси, соответствующим рабочему диапазону поверяемого расходомера;
- При проведении поверки расходомеров, у которых, согласно паспорта, функция измерения объемного газосодержания отсутствует, и измеряемой средой в условиях эксплуатации является жидкостная смесь, для поверки могут быть использованы рабочие эталоны для воспроизведения расхода жидкости (жидкостной смеси) с диапазоном расхода, соответствующим рабочему диапазону поверяемого расходомера, с пределами допускаемой относительной погрешности измерений объёмного расхода и объёма жидкости (жидкостной смеси) от 0,1 % до 0,35 %;
- 3.2 Все применяемые эталоны должны быть аттестованы, средства измерений и контроля должны быть поверены и иметь действующие свидетельства о поверке.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться требования, установленные «Правилами технической эксплуатации электроустановок потребителей» (приказ №6 МинЭнерго России, 13.01.03г.), «Правилами по охране труда при эксплуатации электроустановок» (Приказ Министерства труда и социальной защиты РФ от 24.07.2013г. № 328н, зарег. Министерством юстиции РФ 12.12.2013г. № 30593), а также изложенные в правилах применения эталонов, эксплуатационной документации на средства измерений и составные части расходомера.
 - 4.2 Требования к квалификации поверителей.
- 4.2.1 Поверка расходомеров должна проводиться метрологической службой предприятия (организации), аккредитованной в установленном порядке.
- 4.2.2 Поверку расходомеров должен выполнять поверитель, изучивший технологическую схему эталона и принцип его работы.
- 4.2.3 К проведению поверки допускаются лица, допущенные аккредитованной организацией на право выполнения указанных работ, изучившие руководство по эксплуатации расходомеров и эксплуатационную документацию используемых эталонных средств измерений.

5. УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

- 5.1 При проведении поверки должны быть соблюдены следующие условия, если иные не оговорены особо:
 - температура окружающего воздуха, °С

от +15 до +25;

- относительная влажность воздуха, (при t = +20 °C), %

не более 80;

- атмосферное давление, кПа

от 96 до 104.

- 5.2 При проведении поверки длина прямолинейных участков трубопровода до и после расходомера не должна быть менее установленной в ЭД.
- 5.3 При монтаже сенсорного блока на поверочной установке следует соблюдать пункты, приведённые в разделе «Инструкция по монтажу» ЭД.

6. ПОДГОТОВКА К ПОВЕРКЕ

При подготовке к поверке проводят работы в соответствии с руководством по эксплуатации расходомеров и эксплуатационными документами на используемые средства измерений. На поверку представляют расходомер после проведения настройки и калибровки.

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка комплектности технической документации.

Проверяют наличие эксплуатационно-технической документации на расходомер:

- руководство по эксплуатации;
- оригинал паспорта на расходомер.
 - 7.2 Внешний осмотр.
 - 7.2.1 При внешнем осмотре устанавливают:
 - отсутствие механических повреждений и дефектов, не позволяющих провести поверку;
 - соответствие комплектности расходомера эксплуатационной документации;
- читаемость надписей и обозначений, их соответствие требованиям эксплуатационной документации.
 - 7.3 Проверка идентификационных данных ПО.
- 7.3.1 Чтобы определить идентификационные данные ПО расходомера, необходимо выполнить нижеперечисленные процедуры для блока электроники, входящего в его состав.
- проверить работоспособность органов управления и регулировки блока электроники расходомера при помощи встроенных систем контроля в соответствии с РЭ;
- провести проверку идентификационных данных ПО. Номер версии ПО идентифицируется при включении комплекса путем вывода на экран номера версии. Первые две цифры номера версии ПО должны быть не ниже приведенных в таблице 2.

Таблица 2 – Идентификационные данные ПО.

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Sonartrac Firmware
Номер версии (идентификационный номер) ПО	04.XX.XX
Цифровой идентификатор ПО	0x386A

- 7.3.2 Проверка цифрового идентификатора прибора производится при каждом включении в автоматическом режиме, данный параметр не требует проверки.
- 7.3.3 Если полученные при этом идентификационные данные и идентификационные данные, указанные в описании типа расходомера, идентичны, то делают вывод о подтверждении соответствия идентификационных данных ПО.

В противном случае результаты поверки признают отрицательными.

- 7.4 Опробование.
- 7.4.1 Опробование расходомера проводят на первичном специальном эталоне или рабочем эталоне 1-го разряда (при поверке в испытательной лаборатории), воспроизводящих газожидкостный поток.

- 7.4.2 Опробование расходомера проводят путём изменения параметров потока и качественной оценки реакции на такое изменение.
- 7.4.3 Результаты опробования считают удовлетворительными, если при увеличении (уменьшении) значения параметров потока соответствующим образом изменялись показания расходомера.
 - 7.5 Определение МХ расходомера.

Определение МХ расходомера проводят двумя способами:

- с помощью первичного специального эталона, воспроизводящего двухфазный поток (газ, вода), в испытательном центре ФГУП «ВНИИР»;
- с помощью рабочего эталона расхода многофазных потоков 1-го разряда в испытательной лаборатории.
- эталона 1-го или 2-го разряда для воспроизведения расхода жидкости (жидкостной смеси) с диапазоном расхода, соответствующим рабочему диапазону поверяемого расходомера;

Определение пределов допускаемой относительной погрешности при измерении газосодержания производится с помощью первичного специального эталона или эталона расхода многофазных потоков 1-го разряда в испытательной лаборатории.

Пределы допускаемой относительной погрешности при измерении каждого параметра определяют сравнением значений каждого параметра, измеренного расходомером, со значениями соответствующего параметра, измеренного эталоном, используя в качестве измеряемой среды газожидкостную смесь из водопроводной воды и газа (воздуха).

Для поверки расходомера на эталоне создается газожидкостный поток с комбинацией из трех расходов жидкости (водопроводной воды) ($Q_{\infty 1}$, $Q_{\infty 2}$, $Q_{\infty 3}$) и трех расходов газа (воздуха) ($Q_{\varepsilon 1}$, $Q_{\varepsilon 2}$, $Q_{\varepsilon 3}$). Расходы жидкости соответствуют минимальному, среднему и максимальному расходам, соответствующим диапазону измерений поверяемого расходомера и воспроизводимым на эталоне 1-го или 2-го разрядов (расход жидкости устанавливают с погрешностью $\pm 2,0$ % номинального значения). Расход газа (воздуха) должен обеспечивать объемную долю газа в измерительном участке в пределах $1\div 3$ %, $7\div 12$ % и $15\div 20$ %.

Определение метрологических характеристик измерения объемного газосодержания и объемного расхода жидкости в газожидкостной смеси производится при максимальном объемном расходе жидкости Q_{max} .

Расчет диапазона расходов (м³/ч) для диаметров трубопровода от 50 до 1500 мм выполняется по формулам: $Q_{\text{мин}} = 3600 \cdot \text{S} \cdot 0.91 \text{ м/c}$; $Q_{\text{маx}} = 3600 \cdot \text{S} \cdot 10 \text{ м/c}$,

где S — сечение трубопровода, M^2 .

Допускается воспроизведение расходов с отклонением ±10 % от требуемого значения.

Допускается проведение процедуры определения метрологических характеристик в

эксплуатационном диапазоне применения расходомера.

Определение относительных погрешностей измерений объёмного расхода жидкости производится одновременно в каждой точке, соответствующей определённому расходу жидкости. В каждой точке проводят три измерения.

7.5.1 Относительную погрешность объёмного расхода жидкости δQ_{xij} , %, *i*-го измерения в *j*-ой точке определяют по формуле

$$\delta Q_{\alpha ij} = \frac{Q_{\alpha ij} - Q_{\alpha ij}^{\circ}}{Q_{\alpha ij}^{\circ}} \cdot 100 \tag{1}$$

 $Q_{\infty ij}$ – объёмный расход жидкости, измеренный расходомером, м 3 /ч;

 $Q_{xij}^{\mathfrak{I}}$ — объёмный расход жидкости, воспроизведённый первичным специальным эталоном, рабочим эталоном расхода многофазных потоков 1-го или рабочим эталоном объёмного (массового) расхода жидкостей 1-го или 2-го разряда, м 3 /ч.

Значение пределов относительной погрешности измерений объёма и объёмного расхода жидкости не должно превышать $\pm 1~\%$.

7.5.2 Относительную погрешность измерений объёма и объёмного расхода жидкости в газожидкостной смеси δQ_{zwcij} , %, *i*-го измерения в *j*-ой точке определяют по формуле (2):

$$\delta Q_{z \omega c i j} = \frac{Q_{z \omega c i j} (1 - \frac{GVF_{ij}}{100}) - Q_{\omega c i j}^{\vartheta}}{Q_{\omega c i j}^{\vartheta}} \cdot 100, \tag{2}$$

где $Q_{zжcij}$ – объёмный расход и объём газожидкостной смеси, измеренный расходомером, м³/ч; GVF_{ij} – объемное газосодержание, измеренное расходомером, %;

 $Q_{xcij}^{\mathfrak{I}}$ – объёмный расход и объём жидкости в газожидкостной смеси, воспроизведённый эталоном расхода многофазных потоков 1-го разряда, м 3 /ч.

Значение допускаемой относительной погрешности измерений объёма и объёмного расхода жидкости в потоке газожидкостной смеси не должно превышать $\pm 1~\%$ для диаметра условного прохода от 50 до 1000~мм, и $\pm 3~\%$ для условного прохода свыше 1000~мм.

7.5.3 Относительную погрешность объёмного газосодержания в рабочих условиях δGVF_{ij} , %, i-го измерения в j-ой точке определяют по формуле (3):

$$\delta GVF_{ij} = \frac{GVF_{ij} - GVF_{ij}^{\mathfrak{I}}}{GVF_{ij}^{\mathfrak{I}}} \cdot 100 \tag{3}$$

 GVF_{ij} – объёмное газосодержание, измеренное расходомером, %;

 $\mathit{GVF}_{ij}^{\mathfrak{g}}$ – объёмное газосодержание в рабочих условиях, воспроизведенное эталоном, %.

Пределы относительной погрешности измерений объёмного газосодержания в рабочих условиях не должны превышать ± 5 %.

Расходомер признается прошедшим поверку, если пределы относительной погрешности

измерений не превышают:

- для моделей, предназначенных для измерений объёмного расхода жидкостных потоков на муниципальных предприятиях, сточных вод, не относящихся к стокам промышленных процессов, а также моделей, предназначенных для измерений объёмного расхода жидкостных потоков во всем спектре промышленных процессов, у которых функция измерений объемного содержания газа отсутствует, величины, указанной в пункте 7.5.1.
- для моделей, предназначенных для измерений объёмного расхода жидкостных потоков во всем спектре промышленных процессов с учетом компенсации по истинному объёмному газосодержанию, величин, указанных в пунктах 7.5.1 и 7.5.2.
- для моделей, предназначенных для измерений исключительно объёмного содержания газа в газожидкостных потоках, у которых функция измерений объёмного расхода отсутствует, величины, указанной в пункте 7.5.3.

В случае если это условие для любого *i*-го измерения не выполняется, проводят дополнительное измерение соответствующей величины и повторно определяют относительную погрешность измерения соответствующей величины. Если после этого значение относительной погрешности измерения соответствующей величины не удовлетворяет требованиям, изложенным в соответствующем пункте, то поверку прекращают до выявления и устранения причин невыполнения этих условий. После устранения причин повторно проводят серию из трех измерений соответствующей величины и определяют относительную погрешность для каждого измерения. Если значения относительной основной погрешности измерений вновь превышают значения, указанные в пунктах 7.5.1 или 7.5.2 или 7.5.3, результаты поверки считают отрицательными.

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки оформляют протоколом произвольной формы.
- 8.2 При положительном результате поверки оформляют свидетельство о поверке в соответствии с Приказом Минпромторга России от 02.07.2015г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» и допускают расходомер к эксплуатации. Знак поверки наносят на свидетельство о поверке расходомера и на запись о её результате в паспорте на расходомер.
- 8.3 При отрицательных результатах поверки расходомер к эксплуатации не допускают, свидетельство о поверке аннулируют, выдают извещение о непригодности с указанием причин. Расходомер после выдачи извещения о непригодности направляется в ремонт, утилизируется, либо используется для целей, не входящих в сферу государственного регулирования обеспечения единства измерений.