

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест-Москва»

Е.В. Морин

«12» декабря 2016 г.

Государственная система обеспечения единства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) «Солнечные электростанции ООО «ЭНЕРГОМИР-ПРО»

Методика поверки

РТ-МП-3517-550-2016

Настоящая методика поверки распространяется на системы автоматизированные информационно-измерительные коммерческого учета электроэнергии (АИИС КУЭ) «Солнечные электростанции» проектируемые и изготовленные ООО «ЭНЕРГОМИР-ПРО». Устанавливает порядок проведения первичной и периодической поверок ее измерительно-информационных каналов (далее по тексту – ИК).

Системы автоматизированные информационно-измерительные коммерческого учета электроэнергии (АИИС КУЭ) «Солнечные электростанции» ООО «ЭНЕРГОМИР-ПРО» (далее по тексту – АИИС КУЭ) предназначены для измерения активной и реактивной электроэнергии, для осуществления эффективного автоматизированного коммерческого учета и контроля потребления электроэнергии и мощности по всем расчетным точкам учета, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в центры сбора и обработки информации в АО «АТС», и прочим заинтересованным организациям в рамках согласованного регламента.

Измерительные компоненты АИИС КУЭ поверяют с межповерочным интервалом, установленным при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки АИИС КУЭ, поверяется только этот компонент, и поверка АИИС КУЭ не проводится. После поверки измерительного компонента и восстановления ИК выполняется проверка ИК, той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой измерительного компонента, не нарушили метрологических свойств ИК.

Допускается поверка отдельных ИК, входящих в состав АИИС КУЭ, с указанием в приложении к свидетельству о поверке перечня поверенных ИК.

В состав ИК системы входят измерительные компоненты, приведенные в паспортеформуляре и в описании типа средства измерения изготовителя ООО «ЭНЕРГОМИР-ПРО».

Интервал между поверками четыре года.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции	Номер пункта НД по поверке	Обязательность проведения операции при	
		первичной поверке	периодической поверке
1	2	3	4
1. Подготовка к поверке	6	Да	Да
2. Внешний осмотр	7.1	Да	Да
3. Поверка измерительных компонентов АИИС КУЭ	7.2	Да	Да
4. Проверка счетчиков электрической энергии	7.3	Да	Да
5. Проверка функционирования сервера АИИС КУЭ	7.4	Да	Да
6. Проверка нагрузки вторичных цепей измерительных трансформаторов напряженияи	7.5	Да	Да
7. Проверка нагрузки вторичных цепей измерительных трансформаторов тока	7.6	Да	Да

Продолжение таблицы 1

1	2	3	4
8. Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком	7.7	Да	Да
9. Проверка хода часов компонентов АИИС КУЭ	7.8	Да	Да
10. Проверка отсутствия ошибок информационного обмена	7.9	Да	Да
11. Оформление результатов поверки	8	Да	Да

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в таблице 2.

Таблица 2 – Средства измерений

№ п/п	Наименование	Номер пункта НД по поверке
1	Термометр, диапазон измерений от минус 40 до плюс 50 °C, пределы допускаемой погрешности ± 1 °C	6
2	Вольтамперфазометр, диапазон измерений от 0 до 10 A, предел допускаемой относительной погрешности ± 1,5 %	6
3	Средства измерений вторичной нагрузки ТТ в соответствии с утвержденным документом "Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации"	7.6
4	Средства измерений вторичной нагрузки ТН в соответствии с утвержденным документом "Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации"	7.5
5	Средства измерений падения напряжения в линии соединении счетчика с ТН в соответствии с утвержденным документом "Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации"	7.7
6	Переносной компьютер с программным обеспечением (ПО) и оптический преобразователь для работы со счетчиками системы	7.3
7	Радиочасы "МИР РЧ-01"	7.8

Примечание - Допускается применение других основных и вспомогательных средств поверки с метрологическими характеристиками, обеспечивающими требуемые точности измерений.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1 К проведению поверки АИИС КУЭ допускают поверителей изучивших настоящую методику поверки и руководство по эксплуатации на АИИС КУЭ, имеющих стаж работы по данному виду измерений не менее 1 года.

- 3.2 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим методику измерений, регламентирующую проведение измерений мощности нагрузки трансформаторов тока, и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV, второй удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже III.
- 3.3 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим методику измерений, регламентирующую проведение измерений мощности нагрузки трансформаторов напряжения, и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV, второй удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже III.
- 3.4 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим методику измерений, регламентирующую проведение измерений падения напряжения в линии соединения счетчика с трансформатором напряжения, и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV, второй удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже III.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0, ГОСТ 12.2.007.3, «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей», «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок» ПОТ РМ-016 (РД 153-34.0-03.150), а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.
- 4.2 Эталонные средства измерений, вспомогательные средства поверки и оборудование должны соответствовать требованиям ГОСТ 12.2.003, ГОСТ 12.2.007.3, ГОСТ 12.2.007.7.

5 УСЛОВИЯ ПОВЕРКИ

Условия поверки АИИС КУЭ должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Для проведения поверки представляют следующую документацию:
- руководство по эксплуатации АИИС КУЭ;
- описание типа АИИС КУЭ;
- свидетельства о поверке измерительных компонентов, входящих в ИК, и свидетельство о предыдущей поверке системы (при периодической и внеочередной поверке);
 - паспорт-формуляр АИИС КУЭ;

- паспорта-протоколы на ИК;
- рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за межповерочный интервал (только при периодической поверке).
 - 6.2 Перед проведением поверки выполняют следующие подготовительные работы:
- проводят организационно-технические мероприятия по доступу поверителей и персонала энергообъектов к местам установки измерительных трансформаторов, счетчиков электроэнергии; по размещению эталонов, отключению в необходимых случаях поверяемых средств измерений от штатной схемы;
- проводят организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;
- средства поверки выдерживают в условиях и в течение времени, установленных в нормативных документах на средства поверки;
- все средства измерений, которые подлежат заземлению, должны быть надежно заземлены, подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

- 7.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений измерительных компонентов, наличие поверительных пломб и клейм.
- 7.1.2 Проверяют размещение измерительных компонентов, правильность схем подключения трансформаторов тока и напряжения к счетчикам электрической энергии; правильность прокладки проводных линий по проектной документации на АИИС КУЭ.
- 7.1.3 Проверяют соответствие типов и заводских номеров фактически использованных измерительных компонентов типам и заводским номерам, указанным в формуляре АИИС КУЭ.
- 7.1.4 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

7.2 Поверка измерительных компонентов АИИС КУЭ

Проверяют наличие свидетельств о поверке и срок их действия для всех измерительных компонентов: измерительных трансформаторов тока и напряжения, счетчиков электрической энергии. При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств, срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после поверки этих измерительных компонентов.

7.3 Проверка счетчиков электрической энергии

- 7.3.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на счетчике и испытательной коробке. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения счетчика к цепям тока и напряжения, в частности, правильность чередования фаз. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения счетчиков к цепям тока и напряжения (соответствие схем подключения схемам, приведенным в паспорте на счетчик). Проверяют последовательность чередования фаз с помощью вольтамперфазометра. При проверке последовательности чередования фаз действуют в соответствии с указаниями, изложенными в руководстве по его эксплуатации.
- 7.3.2 Проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.
- 7.3.3 Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Оптический преобразователь подключают к любому последовательному порту переносного компьютера. Опрашивают счетчик по установленному

соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком.

7.3.4 Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптопорт.

7.4 Проверка функционирования сервера АИИС КУЭ (АРМ или сервера)

7.4.1 Проверка программного обеспечения.

Проверка Цифрового идентификатора программного обеспечения происходит на сервере, где установлено ПО "

Таблица 3.1 - Идентификационные данные ПО «Энергосфера»

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	pso_metr.dll	
Номер версии (идентификационный номер) ПО	1.1.1.1	
Цифровой идентификатор ПО (MD5)	cbeb6f6ca69318bed976e08a2bb7814b	

Таблица 3.2 - Идентификационные данные ПО программного модуля УССВ

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Программный модуль Синхронизация времени
Номер версии (идентификационный номер) ПО	0.9.0.0
Цифровой идентификатор ПО (MD5)	943926158778904971c57307f99b2984
Другие идентификационные данные, если имеются	TimeService.exe

Для проверки нужно запустить менеджер файлов, позволяющих производить хэширование файлов (например, Unreal Commander v0.96). В менеджере файлов, необходимо открыть каталог и выделить файлы согласно таблицы 3.1 – 3.2. Далее в закладке Файл Главного меню выбрать команду – Просчитать хэш. После чего получится соответствующее выделенным файлам количество файлов, содержащих код MD5 в текстовом формате. При этом наименование файла MD5 строго соответствует наименованию файла, для которого проводилось хэширование.

- 7.4.2 Проводят опрос текущих показаний всех счетчиков электроэнергии.
- 7.4.3 Проверяют глубину хранения измерительной информации в сервере АИИС КУЭ.
- 7.4.4 Проверяют защиту программного обеспечения на сервере АИИС КУЭ от несанкционированного доступа. Для этого запускают на выполнение программу сбора данных и в поле "пароль" вводят неправильный код. Проверку считают успешной, если при вводе неправильного пароля программа не разрешает продолжать работу.

7.5 Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения

- 7.5.1 Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи ТН со счетчиком. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения первичных и вторичных обмоток ТН. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения первичных и вторичных обмоток ТН.
- $7.5.2~{\rm При}$ проверке мощности нагрузки вторичных цепей TH необходимо убедиться, что отклонение вторичного напряжения при нагруженной вторичной обмотке составляет не более $\pm 10~{\rm \%}$ от $U_{\rm HOM}$.

Измеряют мощность нагрузки ТН, которая должна находиться в диапазоне $(0,25\text{-}1,0)\cdot\mathrm{S}_{\mathrm{HOM}}.$

Измерение мощности нагрузки вторичных цепей ТН проводят в соответствии с МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей».

Примечания:

- 1 Допускается измерение мощности нагрузки вторичных цепей ТН не проводить, если такие измерения проводились при составлении паспортов—протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТН.
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам измерительных трансформаторов.

7.6 Проверка нагрузки вторичных цепей измерительных трансформаторов тока

- 7.6.1 Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения вторичных обмоток ТТ. При отсутствии таких документов проверяют правильность подключения вторичных обмоток ТТ.
- 7.6.2 Измеряют мощность нагрузки вторичных цепей ТТ, которая должна находиться в диапазоне (0,25-1,0) S_{НОМ}. Для трансформаторов с номинальными вторичными нагрузками 1; 2; 2,5; 3; 5 и 10 В·А нижний предел вторичных нагрузок 0,8; 1,25; 1,5; 1,75; 3,75 и 3,75 В·А соответственно.

Измерение тока и вторичной нагрузки ТТ проводят в соответствии с МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей».

Примечания:

- 1 Допускается измерение мощности нагрузки вторичных цепей ТТ не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный ИК в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТТ.
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам ТТ.

7.7 Проверка падения напряжения в линии связи между вторичной обмоткой TH и счетчиком

Измеряют падение напряжения U_{π} в проводной линии связи для каждой фазы в соответствии с документом «Методика измерений падения напряжения во вторичной цепи измерительного трансформатора напряжения прибором Энерготестер ПКЭ-А в условиях

эксплуатации». Падение напряжения не должно превышать 0,25 % от номинального значения на вторичной обмотке TH.

Примечания:

- 1 Допускается измерение падения напряжения в линии соединения счетчика с ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный ИК в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше требования.
- 2 Допускается падение напряжения в линии соединения счетчика с ТН определять расчетным путем, если известны параметры проводной линии связи и сила электрического тока, протекающего через линию связи.

7.8 Проверка хода часов компонентов АИИС КУЭ

- 7.8.1 Включить радиочасы "МИР РЧ-01", принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS). Сверить показания радиочасов с показаниями часов счетчиков и ИВК, и определить поправки: $\Delta t_{Icчi}$ (где i номер счетчика), Δt_{IUBK} .
- 7.8.2 Спустя 24 ч распечатать журнал событий всех компонентов системы, имеющих встроенные программные часы (счетчиков и ИВК) выделив события, соответствующие синхронизации часов счетчиков и ИВК. Определить поправки: Δt_{2cvi} (где i номер счетчика), Δt_{2UBK} . Рассчитать суточный ход часов счетчиков и ИВК как разность поправок: $\Delta_{\Delta t} = \Delta t_2 \Delta t_1$

Считать, что проверка прошла успешно, если ход часов компонентов АИИС КУЭ, не превышает ± 5 с/сут .

7.9 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального сервера.

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

- 7.9.1 На сервере системы распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30-ти минутным интервалом за полные предшествующие дню проверки сутки по всем ИК. Проверяют наличие данных, соответствующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента системы.
- 7.9.2 Распечатывают журнал событий счетчика и отмечают моменты нарушения связи между измерительными компонентами системы. Проверяют сохранность измерительной информации на сервере системы на тех интервалах времени, в течение которого была нарушена связь.
- 7.9.3 Распечатывают на сервере профиль нагрузки за полные сутки, предшествующие дню поверки. Используя переносной компьютер, считывают через оптопорт профиль нагрузки за те же сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящейся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и базе данных центрального сервера не должно превышать двух единиц младшего разряда учтенного значения.
- 7.9.4 Рекомендуется вместе с проверкой по п. 7.9.3 сличать показания счетчика по активной и реактивной электрической энергии строго в конце получаса (часа) и сравнивать с данными, зарегистрированными в сервере системы для того же момента времени. Для этого визуально или с помощью переносного компьютера через оптопорт считывают показания счетчика по активной и реактивной электрической энергии и сравнивают эти данные (с учетом коэффициентов трансформации измерительных трансформаторов), с показаниями

зарегистрированными в сервере системы. Расхождение не должно превышать две единицы младшего разряда.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки выдается свидетельство о поверке в соответствии с приказом Министерства промышленности и торговли Российской Федерации N1815 от 02.07.2015.
- 8.2 Знак поверки наносится в соответствии с приказом Министерства промышленности и торговли Российской Федерации № 1815 от 02.07.2015.
- 8.3 При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании, или выполнении операций поверки, выдается извещение о непригодности в соответствии с приказом Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015.

ФБУ "Ростест-Москва"

Зам. начальника центра № 500

Р.В. Деев