

Уровнемеры буйковые E3 Modulevel

МЕТОДИКА ПОВЕРКИ

Мытищи 2017 г.

СОДЕРЖАНИЕ

- 1. ОПЕРАЦИИ ПОВЕРКИ
- 2. СРЕДСТВА ПОВЕРКИ
- 3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ
- 4. УСЛОВИЯ ПОВЕРКИ
- 5. ПОДГОТОВКА К ПОВЕРКЕ
- 6. ПРОВЕДЕНИЕ ПОВЕРКИ
- 7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Настоящая методика поверки распространяется на уровнемеры буйковые Е3 Modulevel (далее – уровнемеры), изготовленные Magnetrol International n.v., Бельгия, и устанавливает правила и методы их первичной и периодической поверки.

Интервал между поверками 5 лет.

1 Операции поверки

При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики поверки	Первичная поверка	Периодическая поверка
1. Внешний осмотр	6.1	да	да
2. Опробование	6.2	да	да
3. Определение метрологических характеристик	6.3 ÷ 6.6	да	да

2 Средства поверки

2.1 При проведении поверки в лаборатории (имитационным методом) применяют следующие эталонные средства измерений и вспомогательное оборудование.

Гири класса F_2 по ГОСТ OIML К 111-1-2009 массой до 3 кг или набор калиброванных (аттестованных) грузов, вес которых приведен в таблице 2:

Таблица 2.

Условное обозначение груза	Bec, r	Количество, шт.
Ta	567	1
T _b	340	1
T _c	1550	1
T_d	326	4
T _e	590	1

Весы электронные, класс точности по ГОСТ Р 53228-2008 – средний, ВПИ – 3 кг;

Стенд для поверки уровнемера E3 Modulevel (рисунок 1);

Калибратор процессов многофункциональный FLUKE-726 (регистрационный № 52221-12);

Термометр с абсолютной погрешностью и ценой деления не более 1 °C по ГОСТ 28498-90;

Линейка по ГОСТ 427-75, цена деления 1 мм;

Штангенциркуль ШЦ-ІІ-250-0,1;

Установка для поверки уровнемеров УПУ (регистрационный №43144-09), диапазон измерений от 0 до 10 м (поверка с полным демонтажем);

Аспирационный психрометр-барометр по ГОСТ 6853-74;

Рулетка измерительная металлическая с грузом по ГОСТ 7502-98, класс точности 2 или 3 (поверка на месте эксплуатации);

Переносной плотномер ПЛОТ-3Б или ареометр;

Переносной пробоотборник по ГОСТ 2517;

Источник питания, диапазон установки напряжения от 0 до 36 В.

Все эталонные средства поверки должны быть поверены и иметь действующие свидетельства о поверке или оттиски поверительных клейм.

Соотношение пределов допускаемых погрешностей эталонного и поверяемого средств измерений должно быть не менее 1:3.

Допускается применение других средств поверки с характеристиками, отвечающими вышеуказанным требованиям.

Рисунок 1 – Стенд для поверки уровнемера имитационным методом.

3 Требования безопасности и к квалификации поверителей

- 3.1 К поверке допускают лиц, изучивших эксплуатационную документацию на уровнемеры и эталонные средства измерений, правила пожарной безопасности, действующие на предприятии, и утвержденные в установленном порядке, а также правила выполнения работ в соответствии с технической документацией, прошедших обучение и инструктаж по технике безопасности труда в соответствии с ГОСТ 12.0.004 и аттестованных в качестве поверителей.
- 3.2 Монтаж электрических соединений должен проводиться в соответствии с ГОСТ 12.3.032 и «Правилами устройства электроустановок» (раздел VII).

4 Условия поверки

4.1 При проведении поверки в лаборатории (имитационным методом) должны соблюдаться следующие условия:

- температура окружающего воздуха	от 15 до 25 °C
- относительная влажность воздуха	от 50 до 80 %
- атмосферное давление	от 84 до 107 кПа
- напряжение питания постоянного тока	от 12 до 36 В

- 4.2 При проведении поверки отсутствуют тряски, вибрации, магнитные поля и удары, влияющие на работу уровнемеров и эталонных СИ.
- 4.3 Условия эксплуатации эталонных средств измерений должны соответствовать требованиям их эксплуатационной документации.

5 Подготовка к поверке

- 5.1 Перед проведением поверки уровнемер, демонтированный с трансформатором в соответствии с инструкцией (Приложение Б), выдерживают не менее двух часов в помещении (лаборатории) в условиях проведения поверки;
 - 5.2 Устанавливают уровнемер на калибровочный стенд E3 Modulevel, рисунок 1.
- 5.3 Включают эталонные средства измерений и выдерживают во включенном состоянии не менее времени, указанного в их эксплуатационной документации.
- 5.4 Подключают миллиамперметр к выходу уровнемера согласно руководству по эксплуатации;
- 5.5 Включают питание уровнемера и выдерживают его во включенном состоянии не менее 30 минут.

6 Проведение поверки

- 6.1 Внешний осмотр.
- 6.1.1 При внешнем осмотре уровнемера устанавливают:
- соответствие комплектности требованиям эксплуатационной документации фирмы-изготовителя;
- отсутствие механических повреждений и дефектов, влияющих на правильность функционирования и метрологические характеристики уровнемера, а также препятствующие проведению поверки.

Результаты внешнего осмотра считают положительными, если выполняются вышеперечисленные условия.

- 6.2 Опробование.
- 6.2.1 Проверяют версию программного обеспечения (ПО) уровнемера.
- С показывающего устройства уровнемера считывают номер версии программного обеспечения, рисунок 2.

Результат проверки программного обеспечения считают положительным, если номер версии, отображаемый на дисплее электронного блока уровнемера, соответствует указанному в разделе **Программное обеспечение** в Описании типа (Приложение к свидетельству № об утверждении типа средств измерений).

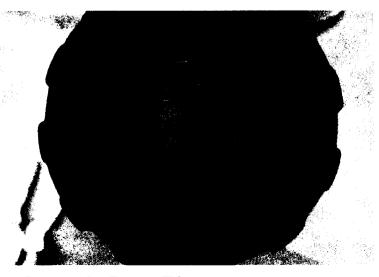


Рисунок 2 – Версия ПО на дисплее уровнемера.

- 6.3 Определение метрологических характеристик уровнемера (полный демонтаж).
- 6.3.1 Определение массы буйка.

Определяют массу буйка на весах. Результаты проверки считают положительными, если измеренное значение массы буйка уровнемера отличается от значения, приведенного в технической документации не более чем на 1 г.

6.3.2 Определение объема буйка.

Определяют объем буйка расчетным методом по результатам измерений его геометрических размеров. Результаты проверки считают положительными, если полученное значение объема буйка уровнемера отличается от значения, приведенного в технической документации не более чем на $1\,\mathrm{cm}^3$.

6.3.3 Определение абсолютной и приведенной погрешности при измерении уровня.

При поверке уровнемера с применением эталонной установки:

включают эталонную установку и фиксируют на ней нулевую контрольную отметку;

включают поверяемый уровнемер и устанавливают на нем нулевую контрольную отметку.

Поправку на несоответствие показаний поверяемого уровнемера и эталонного средства измерений уровня в нулевой контрольной отметке вычисляют по формуле:

$$\Delta_0 = H_0^{\circ} - H_0^{\circ} \tag{1}$$

где H_0^y — показание поверяемого уровнемера, мм;

 H_0^9 – показание эталонной уровнемерной установки, мм.

Абсолютную погрешность уровнемера определяют в пяти точках, равномерно распределенных по всему диапазону измерений уровня при прямом и обратном ходах, т.е. при повышении и понижении уровня жидкости. Число измерений на каждой проверяемой отметке должно быть не менее трех.

Повышают уровень жидкости в уровнемерной установке до каждой контрольной отметки, устанавливаемой по установке (скорость повышения и уменьшения уровня, не более 0,004 м/с), затем уровень жидкости понижают до каждой контрольной отметки, регистрируют показания со средств измерений. Результаты измерений заносят в протокол, форма которого приведена в Приложении А настоящей методики.

Определяют значение абсолютной погрешности уровнемера Δ_{v} по формуле (2):

$$\Delta_{yi} = H_{yi} - H_{9i} - \Delta_0 \tag{2}$$

где $H_{yi}\,$ – значение уровня, измеренное поверяемым уровнемером, мм;

 H_{i} – значение уровня, измеренное уровнемерной установкой (рулеткой), мм;

 Δ_0 — поправка в нулевой точке.

За основную абсолютную погрешность поверяемого уровнемера принимают наибольшее значение, определенное по формуле (2).

Основную приведенную погрешность δ , % вычисляют по результатам измерений, получаемых при приближении к измеряемому параметру как от меньших его значений к большим (прямой ход), так и от больших значений к меньшим (обратный ход), по формуле (3):

$$\delta = \frac{\Delta_{yi}}{H_{ci}} \cdot 100\% \tag{3}$$

Результаты поверки считают положительными, если в каждой контрольной точке значение погрешности, рассчитанной по формуле (3), не превышает установленного предела ± 0.5 %.

6.4 Определение метрологических характеристик уровнемера (имитационный метод).

Определение метрологических характеристик уровнемера проводится методом, основанном на имитации выталкивающей силы, действующей на чувствительный элемент (буек), эквивалентной весу настроечных грузов (гирь).

Поверку уровнемера выполняют в лабораторных условиях, не прикрепляя буек. При этом следует игнорировать сообщения «No Level Signal» / «STATUS SecFltHi» (Отсутствует сигнал уровня / Состояние SecFltHi).

6.4.1 Проверяют функционирование уровнемера.

Для этого изменяют массу грузов, подвешиваемых вместо буйка и контролируют изменение значений уровня на дисплее уровнемера и значений токового выходного сигнала по эталонному прибору.

6.4.2 Запомнить значения: Process S.G.; Calibration S.G.; Level Trim; Process temp; Установить следующие параметры:

Process S.G. – введите значение плотности контролируемой жидкости, равное **Calibration S.G.**;

Level Trim – введите значение уровня, равное «0»;

Process Temp – введите значение температуры в поверочной лаборатории.

6.4.3 Проверить формирование сигналов ошибки:

- имитация налипания на буйке: для этого потянуть направляющую вниз до упора;
- имитация отсоединения буйка: для этого поднять направляющую вверх до упора.

Результаты проверки считаются положительными, если на дисплее отображается информация об ошибке.

Погрешность определяют в пяти точках, равномерно распределенных по всему диапазону измерений уровня и соответствующих выходным сигналам уровнемера, равным:

0; 25; 50; 75; 100 % или 4; 8; 12; 16; 20 мА при прямом и обратном ходе.

Определение погрешности проводят в следующей последовательности:

а) рассчитывают массы грузов, соответствующих 0, 25, 50, 75, 100 % заполнения резервуара (буйковой камеры) по формуле (4):

$$M_{0i} = M_6 - \frac{M_{PB}}{100} \cdot X_i - M_{\Pi}, \qquad (4)$$

где M_6 – масса буйка, г (по заводскому сертификату калибровки);

 M_{oi} — масса, соответствующая весу буйка при погружении в жидкость на X_i , г;

 M_{PB} – разгрузочный вес, г;

 M_{Π} – вес подвески, г;

 X_i – степень погружения буйка в жидкость, %

б) выбрать вес груза в зависимости от диапазона плотности контролируемой среды в соответствии с таблицей 3.

Таблица 3.

	Диапазон изменения плотности контролируемой среды, г/дм ³	Вес буйка, г		Разгрузочный вес, г	
			M_6		M_{PB}
1	0,11 ÷ 0,54	$T_a + 2 \times T_d$	1219	T_d	326
2	0,55 ÷ 1,09	$T_a + 2 \times T_d$	1219	$2 \times T_d$	2 × 326
3	1,10 ÷ 2,20	$T_b + 4 \times T_d$	1644	$4 \times T_d$	4 × 326
4	0,55 ÷ 1,09 Высокое давление	$T_c + T_e$	2140	Te	590

На подвеску последовательно навешивают (снимают) грузы массой, равной значениям массы настроечных грузов, рассчитанных для проверяемых значений измеряемого параметра при соответствующей плотности, указанной в паспорте (сертификате) на уровнемер. При этом показания выходного сигнала считывают не менее чем через 10 с.

Перед началом измерений на обратном ходе уровнемер выдерживают не менее 20 с под воздействием наибольшей массы настроечного груза, соответствующей нижнему пределу измеряемого параметра.

Основную приведенную погрешность δ , % вычисляют по результатам измерений, получаемых при приближении к измеряемому параметру как от меньших его значений к большим (прямой ход), так и от больших значений к меньшим (обратный ход), по формуле (5):

$$\delta = \frac{I_i - I_{0i}}{16} \cdot 100\% \tag{5}$$

где I_i — значение тока, измеренное миллиамперметром (калибратором), мА; I_{0i} — расчетное значение тока, соответствующее массе груза с подвеской, мА. Значение тока, соответствующее массе груза с подвеской M_i рассчитывают

Значение тока, соответствующее массе груза с подвеской M_i рассчитывают по формуле (6):

$$I_{0i} = 4 + 16 \cdot \frac{M_6 - M_i}{M_{PB}} \tag{6}$$

где M_6 – масса буйка, г (по заводскому сертификату калибровки); M_{PB} – разгрузочный вес в соответствии с таблицей 3, г;

6.5 Определение метрологических характеристик уровнемера при измерении уровня раздела фаз между несмешиваемыми жидкостями с плотностью ρ_2 , ρ_1 (имитационный метод).

Определение погрешности проводят в следующей последовательности:

а) рассчитывают массы грузов, соответствующих контрольным точкам 0; 25; 50; 75 и 100 % по формуле (7):

$$M_{0i} = M_6 - \frac{M_6 - V_6 \cdot (\rho_2 - \rho_1)}{100} \cdot X_i - M_{II}$$
 (7)

где $V_{\it 6}$ — объем буйка, дм $^{\it 3}$ (по заводскому сертификату калибровки);

 M_6 – вес буйка в соответствии со строкой 1 таблицы 3, г;

 M_{Π} – вес подвески, г;

 $M_{oi}\,$ – масса грузов, соответствующая весу буйка при погружении в жидкость на X_i , г;

 ρ_2 , ρ_1 – плотности жидкостей нижнего и верхнего слоя соответственно, г/дм³;

 X_i – степень погружения буйка в жидкость с плотностью ρ_2 , %.

Значение выходного тока, соответствующее массе груза с подвеской M_i рассчитывают по формуле (8):

$$I_{0i} = 4 + 16 \cdot \frac{M_6 - M_i}{M_6 - V_6 \cdot (\rho_2 - \rho_1)}$$
 (8)

Результаты поверки считают положительными, если в каждой контрольной точке значение погрешности, рассчитанной по формуле (5), не превышает установленного предела ± 0.5 %.

6.6. Определение метрологических характеристик уровнемера на месте эксплуатации.

Определение погрешности проводят не менее чем при трех значениях уровня жидкости в резервуаре (буйковой камере), равномерно распределенных по всему диапазону измерений, включая минимальное и максимальное значения уровня.

Определение погрешности проводят в следующей последовательности:

- а) измеряют уровень жидкости в резервуаре (буйковой камере) рулеткой с грузом;
- б) измеряют плотность жидкости в резервуаре (буйковой камере) переносным плотномером или ареометром в пробе жидкости, отобранной из резервуара с помощью стационарного или переносного пробоотборника;
 - в) считывают значение токового выходного сигнала уровнемера I_i , мА;
 - г) рассчитывают погрешность уровнемера при измерении уровня по формуле (9):

$$\delta H_i = \frac{H_i - H_{gi}}{H_{max} - H_{min}} \cdot 100 \%$$
 (9)

где H_{max} - значение уровня, соответствующее выходному току уровнемера 20 мA, мм; H_{min} - значение уровня, соответствующее выходному току уровнемера 4 мA, мм;

 H_{i} - уровень жидкости, измеренный рулеткой, мм;

 H_i - значение уровня, соответствующее выходному току I_i , мм.

Значение уровня H_i рассчитывают по формуле (10):

$$H_i = H_{\min} + \frac{H_{\max} - H_{\min}}{16} \cdot (I_i - 4) + \Delta H_i \tag{10}$$

где ΔH_i - поправка на изменение уровня от плотности жидкости при калибровке уровнемера на заводе-изготовителе и на месте эксплуатации, мм.

Значение поправки ΔH_i рассчитывается по формуле (11):

$$\Delta H_i = H_{3i} \cdot \left(\frac{\rho}{\rho_K} - 1\right) \tag{11}$$

 $\rho_{{\scriptscriptstyle K}}$ - плотность жидкости при калибровке уровнемера, г/см³;

 ρ - плотность жидкости в резервуаре (буйковой камере), г/см³.

Результаты поверки считают положительными, если в каждой контрольной точке выполняется условие $|\delta H_i| \leq \delta H_0$. Значение δH_0 рассчитывают по формуле (12):

$$\delta H_0 = 0.5 + 0.056 \cdot T \tag{12}$$

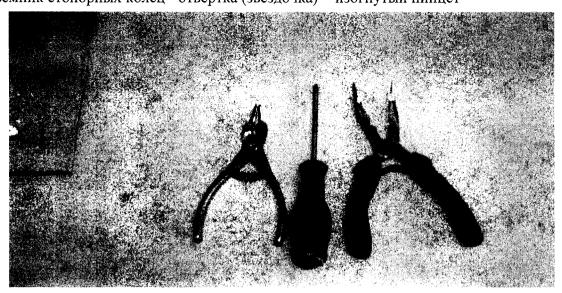
где T – температура окружающей среды при проведении поверки, °C.

7 Оформление результатов поверки

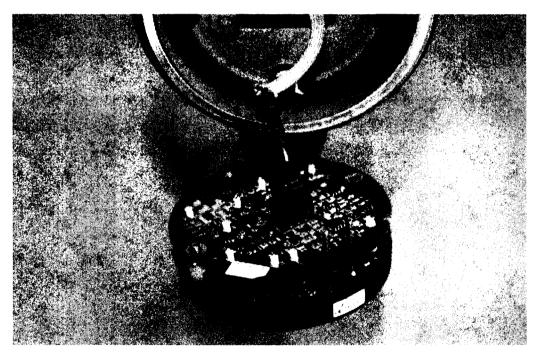
- 7.1 В случае положительных результатов поверки уровнемер признается годным к эксплуатации и на него выдается свидетельство о поверке, форма которого приведена в приложении 1 к документу «Порядок проведения поверки СИ, требования к знаку поверки и содержанию свидетельства о поверке», утвержденному Приказом № 1815 от 2 июля 2015 г.
- 7.2 В случае отрицательных результатов поверки уровнемер признается непригодным, не допускается к эксплуатации и на него выдается извещение о непригодности, форма которого приведена в приложении 2 к документу «Порядок проведения поверки СИ, требования к знаку поверки и содержанию свидетельства о поверке», утвержденному Приказом № 1815 от 2 июля 2015 г.

ПРИЛОЖЕНИЕ А – Форма протокола поверки

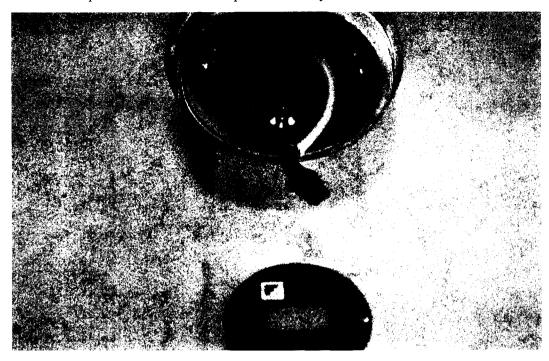
Дата проведения поверки
Место проведения поверки
Наименование и серийный номер СИ
Плотность жидкости, г/см ³
Уровень жидкости, соответствующий, мм
- 4 mA
- 20 мА
Результаты поверки:
1 Внешний осмотр
1.1 Результаты внешнего осмотра
2 Опробование
2.1 Результаты опробования
2.2 Номер версии ПО
3 Определение метрологических характеристик
3.1 Определение массы буйка уровнемера
3.2 Определение объема буйка уровнемера
3.3 Определение метрологических характеристик уровнемера


Степень погружения буйка X_{i} , %	Масса груза (гирь) М _{0і} , г	Ток,	Ток, мА		
		показания эталонного СИ	аналоговый выход уровнемера	δ, %	
0					
25					
50					
75					
100					
	Of	ратный ход			
100					
75					
50					
25					
0					

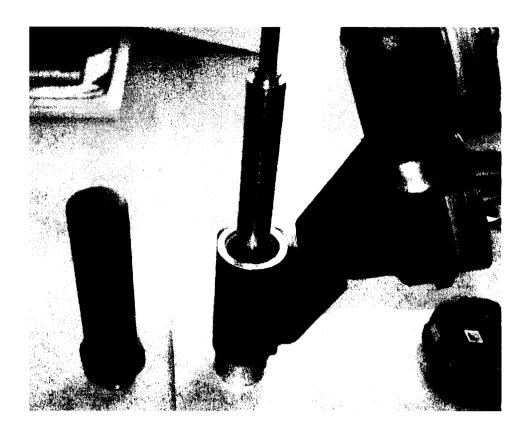
Заключение _		 	


Поверитель (подпись) оттиск клейма

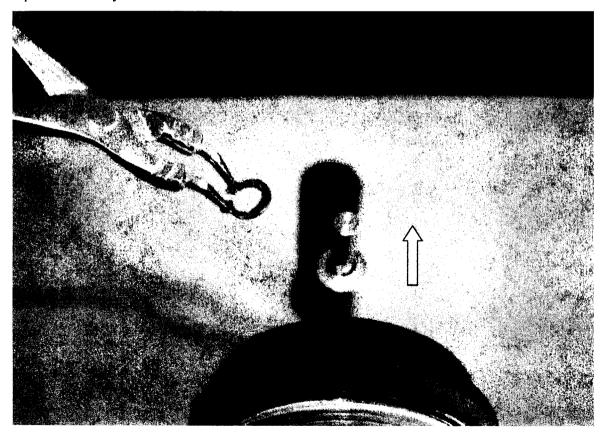
ПРИЛОЖЕНИЕ Б – Инструкция по сборке-разборке уровнемера.


1. Необходимые инструменты: Съемник стопорных колец - отвертка (звездочка) - изогнутый пинцет

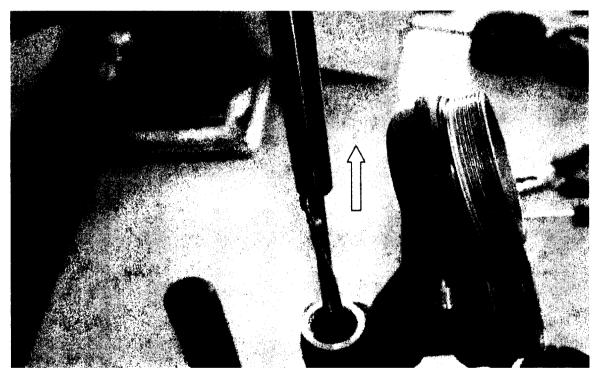
2. Отключите питание, снимите крышку окна (дисплея) затем снимите электронный модуль.



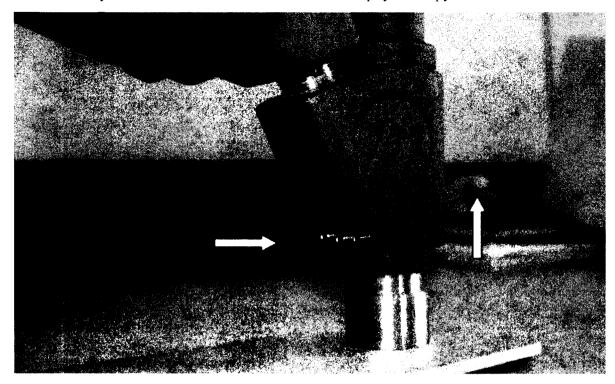
3. Снимите разъем LVDT с электронного модуля.

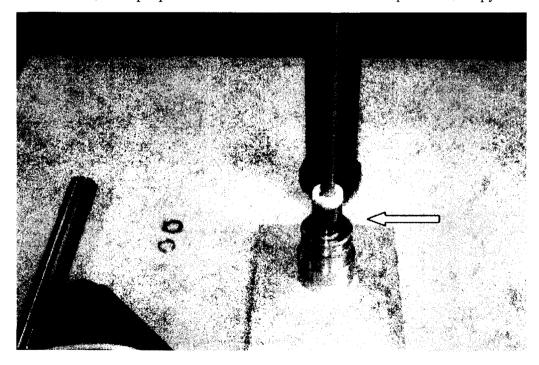


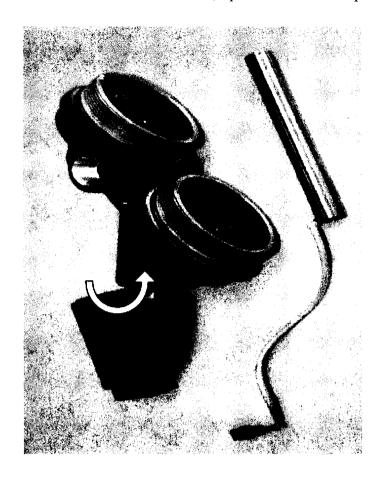
4. Отвинтите и снимите крышку LVDT.



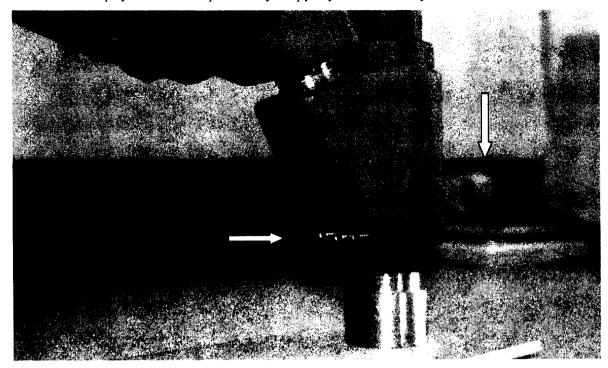
5. Снимите С-образное кольцо (с использованием съемника стопорных колец) и верхнюю шайбу LVDT



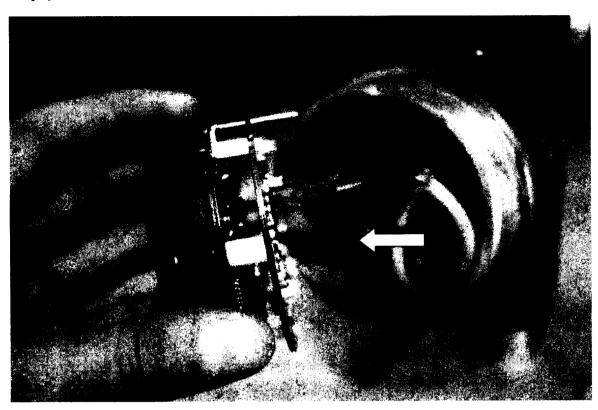

6. Снимите LVDT с Е-трубы

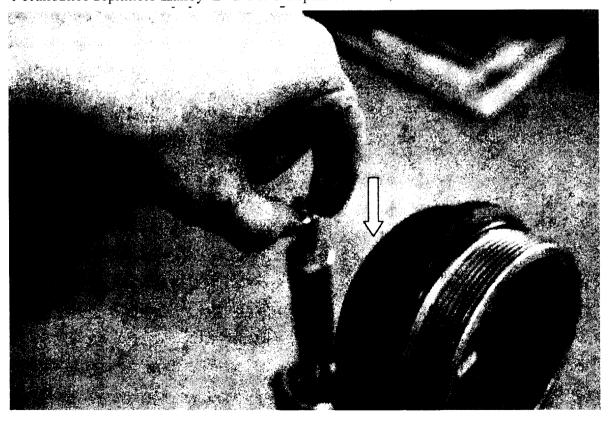

7. Отвинтите установочные винты и снимите ТМ корпус с Е-трубы

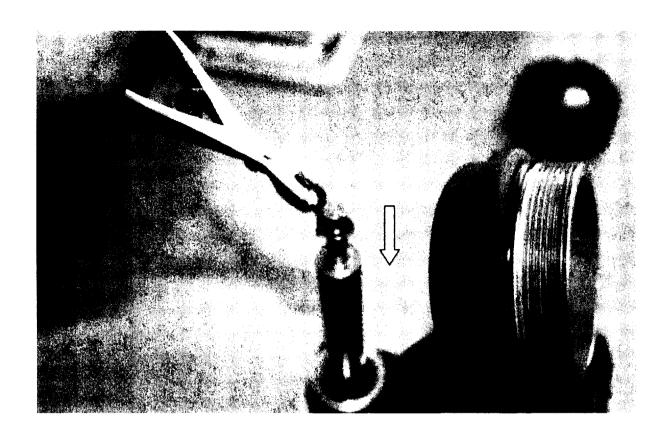
8. Убедитесь, что фторопластовая шайба осталась на закрывающей трубке


9. Установите новый LVDT, проденьте кабель с разъемом от LVDT через корпус TM

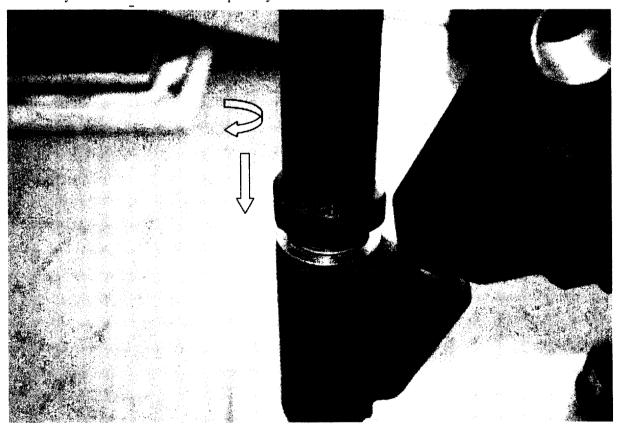

10. Потяните разъем LVDT сквозь корпус TM (с использованием изогнутого пинцета).


11. Установите корпус ТМ на закрывающую трубку и затяните установочные винты.


12. Положите LVDT на закрывающую трубку.



13. Подсоедините разъем LVDT к электронному модулю и вставьте электронный модуль в корпус TM.



14. Установите верхнюю шайбу LVDT и C-образное кольцо.

15. Заново установите и затяните крышку LVDT

16. Установите крышки и включите питание устройства