

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест-Москва»

Е.В. Морин

«16» июня 2016 г.

Государственная система обеспечения единства измерений

Барьеры искрозащиты S1, S2Ex, S3Ex

Методика поверки РТ-МП-3335-551-2016

л.р. 65188-16

Настоящая методика поверки распространяется барьеры искрозащиты S1, S2, S2Ex, S3Ex, изготовленные фирмой LABOR-ASTER, Польша, и устанавливает объем и порядок их первичной и периодической поверок.

Интервал между поверками – 3 года.

Барьеры искрозащиты S1, S2Ex, S3Ex (далее по тексту – барьеры) предназначены для измерительных преобразований аналоговых сигналов постоянного и импульсного напряжения, силы постоянного тока, электрического сопротивления, находящихся во взрывоопасной зоне датчиков, в аналоговые выходные сигналы силы постоянного тока, напряжения постоянного тока и передачи сигналов в безопасную зону.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки проводят операции, указанные в таблице 1, и применяют средства поверки, указанные в таблице 2.

Таблица 1 – Операции поверки

	Номер пункта	Обязателы	ность проведения	
Операции поверки	методики	при поверке		
	поверки	первичной	периодической	
1 Внешний осмотр	7.1	Да	Да	
2 Опробование	7.2	Да	Да	
3 Определение основной относительной				
погрешности преобразований силы				
постоянного тока барьеров S1-ExA, S1-ExB1,				
S1-ExB2, S1-ExB3, S1-ExB4, S1-ExB5,	7.3	Да	Да	
S1-ExBH1, S1-ExBH3, S1-ExBH4, S2Ex-Z-XX,				
S2Ex-ZH-XX, S2Ex-U, S2Ex-SA, S2Ex-SB-XX,				
S2Ex-SBH-XX, S3Ex-U, S3Ex-S				
4 Определение основной относительной				
погрешности преобразований напряжения	7.4	Да	Да	
постоянного тока барьеров S2Ex-U, S2Ex-SA,	7.4		ди	
S2Ex-SB-XX, S2Ex-TP, S3Ex-U, S3Ex-S				
5 Определение основной относительной				
погрешности преобразований	7.5	Да	Да	
электрического сопротивления постоянного	7.5	Да	дα	
тока барьеров S2Ex-R, S2Ex-TP, S3Ex-R				
6 Определение основной относительной				
погрешности преобразований частоты	7.6	Да	Да	
импульсных сигналов барьеров S2Ex-F				

1.2 При несоответствии характеристик поверяемых барьеров установленным требованиям по любому из пунктов таблицы 1 их к дальнейшей поверке не допускают и последующие операции не проводят.

2. СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки применяются средства измерений, перечисленные в таблице 2.
- 2.2 Допускается применять другие основные и вспомогательные средства поверки, с метрологическими характеристиками, обеспечивающими требуемые точности измерений.
 - 2.3 Соотношение пределов допускаемой основной абсолютной погрешности образцовых

средств измерений и поверяемых приборов для каждой проверяемой точки должно быть не более 1:5.

Примечание - При невозможности выполнения соотношения "1/5" допускается использовать эталоны с соотношением не хуже "1/3", при этом погрешность не должна выходить за границы, равные 0,8 от предела допускаемой погрешности барьера.

2.4 Все средства поверки должны быть исправны и поверены в установленном порядке.

Таблица 2 – С	основные средства поверки
Номер пункта методики поверки	Наименование и тип основного средства поверки
1	2
7.3, 7.4	Калибратор многофункциональный Fluke 5520A (Госреестр № 51160-12) — диапазон воспроизведения силы постоянного тока 032,99999 В, пределы допускаемой основной погрешности ±(U·12·10 ⁻⁶ + 20 мкВ), где U — значение воспроизводимого напряжения — диапазон воспроизведения напряжения постоянного тока 032,9999 мА, пределы допускаемой основной погрешности ±(I·100·10 ⁻⁶ + 0,25 мкА), где I — значение воспроизводимой силы тока
7.3, 7.4, 7.5, 7.6	Мультиметр цифровой 34401A (Госреестр № 54848-13) — предел измерения напряжения постоянного тока 10 В, пределы допускаемой абсолютной погрешности измерений ± (0,000035 · U _{изм.} + 0,000005 · U _{пр.}), где
7.5	Магазин электрического сопротивления Р4834 (Госреестр № 11326-90) – класс точности 0,02 – номинальное значение сопротивления одной ступени: старшей декады 10 ⁵ Ом – младшей декады 10 ⁻² Ом
7.6	Генератор сигналов произвольной формы 33220А (Госреестр № 32993-09) — формы выходных сигналов: синусоидальная, прямоугольная, пилообразная, импульсная, произвольная. — диапазон воспроизведения частоты синусоидального сигнала от 1 мкГц до 20 МГц — диапазон воспроизведения частоты сигнала прямоугольной формы от 1мкГц до 20 МГц пределы допускаемой относительной погрешности установки частоты выходного сигнала ± 2·10 ⁻⁵ Источник питания Б5-7 (Госреестр № 6382-77)
Примечание	- основные метрологические и технические характеристики приведены в

Примечание – основные метрологические и технические характеристики приведены описаниях типа, доступных по ссылке: http://www.fundmetrology.ru/10_tipy_si/7list.aspx

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке клещей допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений и на средства поверки.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение с группой допуска по электробезопасности не ниже III.
- 4.2 При проведении поверки должны быть соблюдены требования ГОСТ 12.2.007.0-75, ГОСТ 12.3.019-80, ГОСТ 12.2.007.7-75, требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.
- 4.3 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 5.1 Условия поверки барьеров должны соответствовать условиям их эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.
 - 5.2 При проведении поверки должны соблюдаться следующие условия:

 - относительная влажность воздуха, % от 30 до 80
 - атмосферное давление, кПа
 от 84 до 106

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75.
 - 6.2 Средства поверки, должны быть поверены в установленном порядке.
- 6.3 Средства поверки и поверяемые барьеры должны быть подготовлены к работе согласно их руководствам по эксплуатации.
- 6.4 Контроль условий проведения поверки по пункту 5.1 должен быть проведен перед началом поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие поверяемого барьера требованиям:

- комплектности барьера в соответствии с руководством по эксплуатации, включая руководство по эксплуатации и методику поверки;
 - отсутствие механических повреждений корпуса;
 - внутри корпуса не должно быть посторонних предметов;
 - все надписи на барьерах должны быть четкими и ясными;
 - разъемы не должны иметь повреждений и должны быть чистыми.

Барьеры, имеющие дефекты, дальнейшей поверке не подвергаются, бракуются и направляются в ремонт.

7.2 Опробование

Опробование работоспособности барьеров проводят путем подачи на вход барьера сигнал соответствующий 0 и 100 % диапазона входного сигнала. При этом должна наблюдаться соответствующая реакция на выходе барьера, наблюдаемая с помощью мультиметра.

При неверном функционировании барьер бракуется и направляется в ремонт.

7.3 Определение основной относительной погрешности преобразований силы постоянного тока барьеров S1-ExA, S1-ExB1, S1-ExB2, S1-ExB3, S1-ExB4, S1-ExB5, S1-ExBH1, S1-ExBH3, S1-ExBH4, S2Ex-Z-XX, S2Ex-ZH-XX, S2Ex-U, S2Ex-SA, S2Ex-SB-XX, S2Ex-SBH-XX, S3Ex-U, S3Ex-S.

Собирают схему поверки согласно рисункам 1-3 приложения A для соответствующих типов барьеров. Подключают, соблюдая полярность, калибратор многофункциональный Fluke 5520A (далее по тексту – калибратор) к входным клеммам (1, 2 или 3, 4) барьера.

Выходной сигнал с барьера (клеммы 5 и 6) контролируют с помощью мультиметра цифрового 34410A (далее по тексту - мультиметр).

На калибраторе устанавливают режим воспроизведения силы постоянного тока. При поверке барьеров типа S2Ex-Z-XX, S2Ex-ZH-XX калибратор устанавливают в режим электронной нагрузки с пределом регулирования тока от 0 до 100 мА.

Мультиметр переводят в режим измерения тока или напряжения в зависимости от установленного выходного сигнала барьера.

Определение относительной погрешности преобразований силы постоянного тока проводится в пяти точках диапазона входного сигнала. Для этого на входе барьера с помощью калибратора последовательно задаются следующие значения входного сигнала X для диапазона входного сигнала $4-20\,\mathrm{mA}$: $4\,\mathrm{mA}$, $8\,\mathrm{mA}$, $12\,\mathrm{mA}$, $16\,\mathrm{mA}$, $20\,\mathrm{mA}$. Для диапазонов входного сигнала $0-5\,\mathrm{mA}$, $1-5\,\mathrm{mA}$ и $0-20\,\mathrm{mA}$ устанавливают значения входных токов из второго, третьего и четвертого столбца таблицы $3\,\mathrm{cootsetctsehho}$.

Выходной сигнал контролируется с помощью мультиметра.

Номинальные значения выходного сигнала $Y_{\text{ном}}$, соответствующие установленным значениям входного тока, приведены в таблице 3.

Входной сигнал, мА			Выходной сигнал				
4-20 мА	0-5 мА	1-5 мА	0-20 мА	4-20 мА	0-10 B	0-5 B	1-5 B
4	0	1	0	4	0	0	1
8	1,25	2	5	8	2,5	1,25	2
12	2,5	3	10	12	5	2,5	3
16	3,75	4	15	16	7,5	3,75	4
20	5	5	20	20	10	5	5

Таблица 3 – Номинальные значения входного/выходного сигнала

Для каждой точки X_i регистрируется результат измерения Y_i , соответствующий установленным на калибраторе значениям входного сигнала X_i .

По измеренным значениям Y_i для каждой точки X_i вычисляется основная относительная погрешность преобразований по формуле:

$$\delta_{i} = \frac{Y_{\text{HoMi}} - Y_{i}}{Y_{\text{HoMi}}} \cdot 100 \% \tag{1}$$

где $Y_{\text{номі}}$ — номинальное значение выходного сигнала, соответствующее значению входного сигнала X_i , задаваемого на выходе калибратора; Y_i — измеренное значение выходного сигнала

Выбрать максимальное значение относительной погрешности для барьера из всех значений по формуле:

$$\delta_{\max} = \max |\delta_i| \tag{2}$$

Результаты поверки считают удовлетворительными, если полученные значения погрешностей δ_{max} по абсолютной величине не превышают нормируемых значений, указанных в описании типа на барьеры.

7.4 Определение основной относительной погрешности преобразований напряжения постоянного тока барьеров S2Ex-U, S2Ex-SA, S2Ex-SB-XX, S2Ex-TP, S3Ex-U, S3Ex-S.

Собирают схему поверки согласно рисункам 2 – 3 приложения А для соответствующих типов барьеров. Подключают, соблюдая полярность, калибратор многофункциональный Fluke 5520A к входным клеммам (1, 2 или 3, 4) барьера.

Выходной сигнал с барьера (клеммы 5 и 6) контролируют с помощью мультиметра цифрового 34410A.

На калибраторе устанавливают режим воспроизведения напряжения постоянного тока.

Мультиметр переводят в режим измерения тока или напряжения в зависимости от установленного выходного сигнала барьера.

Определение относительной погрешности преобразований напряжения постоянного тока проводится в пяти точках диапазона входного сигнала. Для этого на входе барьера с помощью калибратора последовательно задаются следующие значения входного напряжения $U_{\rm Bx}$ для диапазона входного сигнала $0-10~{\rm B}$: $0~{\rm B}$, $2,5~{\rm B}$, $5~{\rm B}$, $7,5~{\rm B}$, $10~{\rm B}$. Для диапазонов входного сигнала $0-5~{\rm B}$ и $1-5~{\rm B}$ устанавливают значения входных напряжений из шестого и восьмого столбца таблицы 3 соответственно.

Выходной сигнал контролируется с помощью мультиметра.

Номинальные значения выходного сигнала Y_{ном}, соответствующие установленным значениям входного сигнала, приведены в таблице 3.

Для каждой точки X_i регистрируется результат измерения Y_i , соответствующий установленным на калибраторе значениям входного сигнала X_i .

По измеренным значениям Y_i для каждой точки X_i вычисляется основная относительная погрешность преобразований по формуле (1).

Выбрать максимальное значение относительной погрешности для барьера из всех значений по формуле (2).

Результаты поверки считают удовлетворительными, если полученные значения погрешностей δ_{max} по абсолютной величине не превышают нормируемых значений, указанных в описании типа на барьеры.

Для барьеров, входным сигналом которых являются сигналы термопар, определение относительной погрешности преобразований напряжения постоянного тока проводят в следующей последовательности:

- выбирают проверяемые точки T_i (не менее пяти), равномерно распределенные по диапазону входного сигнала (температуры), и записывают значения в ${}^{\circ}C$;
- находят для соответствующего типа термопар по таблицам ГОСТ Р 8.585-2001 значения термоЭДС U_i в мВ для температур T_i ;
- измеряют температуру T_{xc} вблизи места подключения холодных спаев термопар к барьеру;
- находят но таблицам ГОСТ Р 8.585-2001 значение термоЭДС U_{xc} , в мВ, соответствующей температуре холодного спая T_{xc} ;
- для каждой проверяемой точки рассчитывают значения входного сигнала в мВ по формуле:

$$X_{i} = (U_{i} - U_{xc}) \tag{3}$$

где U_i – значения термоЭДС U_i в мВ для температур T_i ;

 U_{xc} — значение термоЭДС U_{xc} , в мВ, соответствующей температуре холодного спая T_{xc}

- рассчитывают номинальные значения выходного сигнала $Y_{\text{ном}}$, соответствующие установленным значениям входного сигнала, по формуле:

$$Y_{\text{HOMI}} = (T_{i} - T_{H}) \cdot \frac{Y_{B} - Y_{H}}{T_{D} - T_{U}} + Y_{H}$$
(4)

где $Y_{\text{ном}i}$ — номинальное значение выходного сигнала, соответствующее значению входного сигнала T_i ;

Т_в, Т_н – верхний и нижний предел измерения входного сигнала в °С;

 $Y_{\text{в}},\,Y_{\text{н}}$ – верхний и нижний предел измерения выходного сигнала в мА или B

- на входе барьера с помощью калибратора последовательно задаются значения входного сигнала X_i в мB;
- регистрируется результат измерения Y_i , соответствующий установленным на калибраторе значениям входного сигнала X_i ;
- по измеренным значениям Y_i вычисляется основная относительная погрешность преобразований по формуле (1);
- выбирается максимальное значение относительной погрешности для барьера из всех значений по формуле (2).

Результаты поверки считают удовлетворительными, если полученные значения погрешностей δ_{max} по абсолютной величине не превышают нормируемых значений, указанных в описании типа на барьеры.

7.5 Определение основной относительной погрешности преобразований электрического сопротивления постоянного тока барьеров S2Ex-R, S2Ex-TP, S3Ex-R

Собирают схему поверки согласно рисункам 2 – 3 приложения А для соответствующих типов барьеров. Подключают, соблюдая полярность, магазин электрического сопротивления Р4834 (далее по тексту – магазин) к входным клеммам (1, 2 или 3, 4) барьера.

Выходной сигнал с барьера (клеммы 5 и 6) контролируют с помощью мультиметра цифрового 34410А.

Мультиметр переводят в режим измерения тока или напряжения в зависимости от установленного выходного сигнала барьера.

Определение относительной погрешности преобразований сопротивления постоянного тока проводится в пяти точках R_i , равномерно распределенных по диапазону входного сигнала, в следующей последовательности:

- для каждой проверяемой точки рассчитывают номинальные значения выходного сигнала $Y_{\text{ном}}$, соответствующие установленным значениям входного сигнала, по формуле:

$$Y_{\text{HOMI}} = (R_i - R_{\text{H}}) \cdot \frac{Y_{\text{B}} - Y_{\text{H}}}{R_{\text{B}} - R_{\text{H}}} + Y_{\text{H}}$$
 (5)

где $Y_{\text{номі}}$ — номинальное значение выходного сигнала, соответствующее значению входного сигнала R_i ;

 $R_{\mbox{\tiny B}},\,R_{\mbox{\tiny H}}$ – верхний и нижний предел измерения входного сигнала в Ом;

Y_в, Y_н – верхний и нижний предел измерения выходного сигнала в мА или В

- на входе барьера с помощью магазина сопротивления последовательно задаются значения входного сигнала R_i в Ом;
- регистрируется результат измерения Y_i , соответствующие установленным значениям входного сигнала R_i ;
- по измеренным значениям Y_i вычисляется основная относительная погрешность преобразований по формуле (1);
- выбирается максимальное значение относительной погрешности барьера из всех значений по формуле (2).

Результаты поверки считают удовлетворительными, если полученные значения погрешностей δ_{max} по абсолютной величине не превышают нормируемых значений, указанных в описании типа на барьеры.

Для барьеров, входным сигналом которых являются сигналы термопреобразователей сопротивления, определение относительной погрешности преобразований электрического сопротивления проводят в следующей последовательности:

- выбирают проверяемые точки T_i (не менее пяти), равномерно распределенные по диапазону входного сигнала (температуры) и записывают значения в ${}^{\circ}$ С;
- находят для соответствующего типа чувствительного элемента термопреобразователя сопротивления по таблицам ГОСТ 6651-2009 значения сопротивления R_i в Ом для температур T_i ;
- рассчитывают номинальные значения выходного сигнала $Y_{\text{ном}}$, соответствующие установленным значениям входного сигнала, по формуле:

$$Y_{\text{HOMI}} = (T_{i} - T_{H}) \cdot \frac{Y_{B} - Y_{H}}{T_{R} - T_{H}} + Y_{H}$$
 (6)

где $Y_{\text{номі}}$ — номинальное значение выходного сигнала, соответствующее значению входного сигнала T_i ;

 $T_{\text{в}},\,T_{\text{н}}$ – верхний и нижний предел измерения входного сигнала в $^{\circ}C.$

 $Y_{\text{в}}, Y_{\text{н}}$ – верхний и нижний предел измерения выходного сигнала в мА или В

- на входе барьера с помощью калибратора последовательно задаются значения входного сигнала $R_{\rm i}$ в Ом;
- регистрируется результат измерения Y_i , соответствующие установленным на калибраторе значениям входного сигнала R_i ;
- по измеренным значениям Y_i для каждой точки R_i вычисляется основная относительная погрешность преобразований по формуле (1);
- выбирается максимальное значение относительной погрешности барьера из всех значений по формуле (2).

Результаты поверки считают удовлетворительными, если полученные значения погрешностей δ_{max} по абсолютной величине не превышают нормируемых значений, указанных в описании типа на барьеры.

7.6 Определение основной относительной погрешности преобразований частоты импульсных сигналов барьеров S2Ex-F

Собирают схему поверки согласно рисунку 4 приложения А. Подключают, соблюдая полярность, генератор сигналов произвольной формы 33220A (далее по тексту – генератор) к входным клеммам (1, 3) барьера.

Выходной сигнал с барьера (клеммы 5 и 6) контролируют с помощью мультиметра цифрового 34410А.

На генераторе устанавливают выходной сигнал прямоугольной формы с характеристиками, соответствующим характеристикам барьера, указанным в эксплуатационной документации.

Мультиметр переводят в режим измерения тока или напряжения в зависимости от установленного выходного сигнала барьера.

Определение относительной погрешности преобразований частоты проводится в пяти точках F_i , равномерно распределенных по диапазону входного сигнала, в следующей последовательности:

для каждой проверяемой точки рассчитывают номинальные значения выходного сигнала
 Y_{ном}, соответствующие установленным значениям входного сигнала, по формуле:

$$Y_{\text{HOM}i} = (F_i - F_h) \frac{Y_h - Y_h}{F_h - F_h} + Y_h$$
 (7)

где $Y_{\text{номі}}$ — номинальное значение выходного сигнала, соответствующее значению входного сигнала F_i ;

F_в, F_н − верхний и нижний предел измерения входного сигнала в Гц;

 $Y_{\text{в}},\,Y_{\text{н}}$ – верхний и нижний предел измерения выходного сигнала в мА или В

- на вход барьера с помощью генератора последовательно создается импульсный сигнал прямоугольной формы с частотой следования импульсов F_i в Γ ц;
- регистрируется результат измерения Y_i , соответствующий установленным значениям входного сигнала F_i ;
- по измеренным значениям Y_i вычисляется основная относительная погрешность преобразований по формуле (1);
- выбирается максимальное значение относительной погрешности барьера из всех значений по формуле (2).

Результаты поверки считают удовлетворительными, если полученные значения погрешностей δ_{max} по абсолютной величине не превышают нормируемых значений, указанных в описании типа на барьеры.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Положительные результаты поверки барьера оформляют свидетельством о поверке в соответствии с приказом Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 8.2 Форма рекомендованного протокола результатов поверки для барьеров приведена в Приложении Б.
 - 8.3 Знак поверки наносится в месте, установленном в описании типа средства измерений.
- 8.4 При несоответствии результатов поверки требованиям любого из пунктов настоящей методики свидетельство о поверке аннулируется и выписывается извещение о непригодности в соответствии с приказом Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Начальник лаборатории № 551 ФБУ «Ростест-Москва»

ПРИЛОЖЕНИЕ А (Обязательное)

Схемы электрических подключений

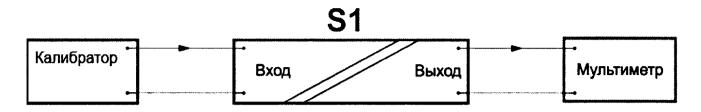


Рис. 1 – Схема подключения барьеров типа S1

Рис. 2 – Схема подключения барьеров типа S2Ex

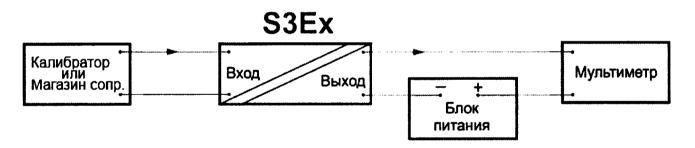


Рис. 3 – Схема подключения барьеров типа S3Ex

Рис. 4 – Схема подключения барьеров типа S2Ex-F

ПРИЛОЖЕНИЕ Б (Рекомендуемое)

Протокол поверки

		N º	OT		
Усло	вия поверки:				
— от — атп Сред	носительная вла мосферное давл ства поверки:	жность воз ение, кПа	духа, %	ской номер	
№ канала	Входной сигнал, І _{вх} , мА	І _{номі,} мА	І измі, мА	Вычисленная основная относительная погрешность δ _i , %	Пределы допускаемой основной относительной погрешности δ, %
	0	0			
	5	5			
1	10	10			± 0,2
	15	15			
	20	20			
	0	0			
2	5	5			
	10	10			$\pm 0,2$
	15	15			
	20	20			
Поверитель:					
iiozopiiiovib.	Ф.И.Ф		Подп	ись Дата	 l