ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

УТВЕРЖДАЮ

Заместитель ниректора по развитию

A.С. Тайбинский

2019 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Датчики расхода ДРС.Т

Методика поверки

ДРС.Т.00.000 МП2 (с Изменением № 1)

Начальник научно-исследовательского отдела Р.А. Корнеев

Тел.: (843) 272-12-02

Настоящая инструкция распространяется на датчики расхода ДРС.Т (далее – датчики), предназначенные для измерений объема жидкости в потоке и объемного расхода, и устанавливает методику и последовательность их первичной и периодической поверок.

Интервал между поверками – 3 года.

(Измененная редакция, Изм. № 1)

1 Операции поверки

При проведении поверки выполняют следующие операции:

- внешний осмотр (пункт 6.1);
- подтверждение соответствия программного обеспечения (пункт 6.2);
- опробование (пункт 6.3);
- определение метрологических характеристик (пункт 6.4).

При проведении поверки в условиях эксплуатации выполняют операции по разделу 7:

- внешний осмотр (пункт 7.1);
- опробование (пункт 7.2);
- определение относительной погрешности (пункт 7.3).

(Измененная редакция, Изм. № 1)

2 Средства поверки

- 2.1 При проведении поверки применяют следующие средства поверки:
- рабочий эталон единиц объемного расхода и объема жидкости в потоке 3-го разряда (далее эталон) в соответствии с частью 1 Приказа Росстандарта от 07.02.2018 № 256 в диапазоне расхода соответствующем диапазону расхода поверяемого датчика расхода ДРС.Т с пределами относительной погрешности рабочего эталона ± 0,5 %;
- 2.2 Все эталоны, используемые в качестве средств поверки, должны быть аттестованы в установленном порядке.
- 2.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

(Измененная редакция, Изм. № 1)

3 Требования безопасности

- 3.1 При проведении поверки соблюдают требования:
- правил безопасности при эксплуатации средств поверки и поверяемого средства измерения, приведенных в их эксплуатационных документах;
 - инструкций по охране труда, действующих на объекте.
- 3.2 К проведению поверки допускаются лица, изучившие настоящую инструкцию, руководство по эксплуатации датчиков и эксплуатационные документы на средства поверки, применяемые при поверке и прошедшие инструктаж по технике безопасности.
- 3.3 При появлении течи измеряемой среды и других ситуаций, нарушающих процесс поверки, поверка должна быть прекращена.

Раздел 3 (Измененная редакция, Изм. № 1)

4 Условия поверки

- 4.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха, °С

 $(20 \pm 5);$

- относительная влажность окружающего воздуха, %

от 30 до 80;

– атмосферное давление, кПа

от 84 до 106,7;

- измеряемая среда
- при температуре измеряемой среды, °C

 $(20 \pm 10);$

– длина прямолинейного участка трубопровода до и после датчика - не менее 5DN и 3DN, соответственно.

(Измененная редакция, Изм. № 1)

5 Подготовка к поверке

Перед проведением поверки выполняют следующие подготовительные работы:

- проверку выполнения условий по разделам 2, 3 и 4 настоящей инструкции;
- проверку наличия действующих свидетельств об аттестации эталона;
- после транспортирования при отрицательных температурах датчик перед поверкой выдерживают при нормальных условиях окружающей среды (температура $20\pm5^{\circ}$ C, влажность от 30 до 80 %) не менее 6 часов;
- подготовку к работе средств поверки и датчиков в соответствии с их эксплуатационными документами.

(Измененная редакция, Изм. № 1)

6 Проведение поверки

6.1 Внешний осмотр

При внешнем осмотре проверяют отсутствие механических повреждений, внешний вид, комплектность и маркировку предусмотренных в эксплуатационных документах датчика.

Результаты проверки считают положительными, если при внешнем осмотре датчика устанавливают соответствие поверяемого датчика требованиям технической документации в части маркировки, упаковки, транспортирования и хранения, отсутствие повреждений и дефектов, ухудшающих внешний вид датчика и препятствующих проведению поверки.

(Измененная редакция, Изм. № 1)

6.2 Подтверждение соответствия программного обеспечения СИ

Подтверждение соответствия программного обеспечения датчика проводят следующим образом:

- после подачи питания на датчик в течение 5 секунд на встроенном дисплее отобразится номер версии программного обеспечения (далее - Π O).

Результат подтверждения соответствия программного обеспечения датчика считается положительным, если полученные идентификационные данные ПО (номер версии) соответствуют идентификационным данным, указанным в описании типа датчиков.

(Введен дополнительно, Изм. № 1)

6.3 Опробование

Датчик устанавливают на эталон согласно эксплуатационным документам на датчик и эталон.

Результаты опробования датчика считают положительными, если при увеличении или уменьшении значений объемного расхода, показания датчика изменяются пропорционально с показаниями эталона (увеличиваются или уменьшаются), отсутствуют течи и каплепадения на датчике.

(Измененная редакция, Изм. № 1)

- 6.4 Определение метрологических характеристик
- 6.4.1 Определение метрологических характеристик датчика при измерении объема жидкости в потоке и объемного расхода жидкости при использовании частотноимпульсного канала.

При определении метрологических характеристик определяют относительную погрешность датчика при измерении объема жидкости в потоке и объемного расхода жидкости путем сравнения показаний датчика и эталона.

Относительную погрешность датчика определяют при следующих значениях расхода измеряемой среды: Qнанм; 0,5 · Qнанб; Qнанб (м³/ч).

Допускается в точке Qнаиб выполнять измерения при расходе 0,75 Qнаиб.

При каждом значении расхода проводят не менее 3-х измерений. Точки расхода устанавливаются с допуском +10 % от $Q_{\text{наим}} \pm 10 \%$ от $0.5 \cdot Q_{\text{наиб}}$, -10 % от $Q_{\text{наиб}}$.

Относительную погрешность датчика при измерении объема жидкости в потоке δ_{ν_y} , %, определяют по формуле:

$$\delta_{V_{ij}} = \left(\frac{V_{ij} - V_{\ni ij}}{V_{\ni ij}}\right) \cdot 100 \tag{1}$$

где V – значение объема жидкости в потоке по показаниям датчика, дм 3 ;

 V_3 — значение объема жидкости в потоке по показаниям эталона, дм³;

і, ј - номер измерения и точки расхода соответственно.

Значение объема жидкости в потоке по показаниям датчика, V_{ij} , дм³, определяют по формуле:

$$V_{ij} = N_{ij} \cdot K, \tag{2}$$

K – коэффициент преобразования датчика, дм 3 /имп;

N -количество импульсов, имп.

Минимальное количество импульсов N, во время поверки, при одном измерении, должно быть не менее 500. Вес выходного импульса датчика установить: при расходах до $4 \text{ м}^3/\text{ч} - 0,0001 \text{ м}^3/\text{имп.}$, для расходов $4 \text{ м}^3/\text{ч}$ и выше - $0,001 \text{ м}^3/\text{имп.}$

Метрологические характеристики датчика при измерении объемного расхода жидкости принимают равными метрологическим характеристикам датчика при измерении объема жидкости в потоке.

Результаты поверки считают положительными, если относительная погрешность при измерении объема жидкости в потоке и объемного расхода не превышает пределов ±1.5 %.

6.4.2 Определение относительной погрешности датчика при измерении объема жидкости в потоке и объемного расхода жидкости при использовании токового канала

Выполняют не менее трех измерений при каждом значении расхода.

Относительную погрешность датчика при измерении объемного расхода жидкости при использовании токового канала $\delta_{ij} = \frac{Q_{ij} - Q_{3ij}}{Q_{3ij}} \cdot 100$ (3)

$$\delta_{ij} = \frac{Q_{ij} - Q_{3ij}}{Q_{3ij}} \cdot 100 \tag{3}$$

 $\mathcal{L}_{\text{му}}$ – значение объемного расхода жидкости по показаниям эталона, гле приведенное к условиям измерений в датчике, м³/ч;

- \mathcal{L}_{ij} значение объемного расхода жидкости по показаниям датчика, полученного через токовый канал, м³/ч;
- i, j номер измерения и точки расхода соответственно.

Результаты определения метрологических характеристик считают положительными, если относительная погрешность датчика при измерении объемного расхода жидкости в потоке не превышает пределов $\pm 2,5$ %.

(Измененная редакция, Изм. № 1)

7 Проведение поверки в условиях эксплуатации

7.1 Внешний осмотр

При внешнем осмотре устанавливают соответствие расходомера следующим требованиям:

- соответствие комплектности и маркировки требованиям эксплуатационной документации;
 - отсутствие механических повреждений, влияющих на работу расходомера;
- отсутствие нарушений лакокрасочного покрытия, дефектов, затрудняющих прочтение показаний жидкокристаллического дисплея измерительного блока.

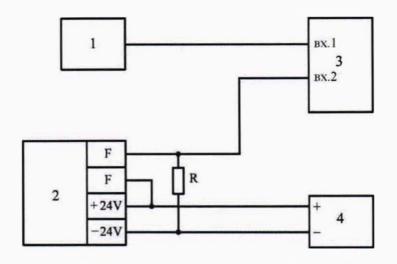
Заводские номера расходомера и его составных частей должны соответствовать номерам, приведенным в паспорте на изделие.

Расходомер, не удовлетворяющий указанным выше требованиям, к дальнейшему проведению поверки не допускают.

7.2 Опробование

При опробовании проверяют работоспособность расходомера, портативного прибора ПА-1, подключенного к расходомеру. Изменение показаний индикатора прибора ПА-1 показывает пригодность расходомера для дальнейшей поверки.

Для определения относительной погрешности выполняют соединения в соответствии с Рисунком 2.


7.3 Определение относительной погрешности

Относительную погрешность расходомера определяют при текущих значениях расхода, и «нулевом» расходе (задвижка трубопровода закрыта).

В каждой точке расхода проводят не менее трех измерений. Изменение расхода за время проведения испытаний должно быть не более ± 10 %. Результаты измерений регистрируют по показаниям прибора ПА-1, подключенного к выходам расходомера и эталонного расходомера Panametrics PT 878.

Определение погрешности при измерении объема жидкости выполняется по формулам 1 и 2.

Результаты поверки в условиях эксплуатации считаются положительными, если погрешность расходомера не превышает значений, указанных в паспорте.

1 – эталонный расходомер Panametrics PT 878; 2 – датчик расхода ДРС.Т; 3–прибор ПА-1; 4– источник питания; R–резистор МЛТ-0,125 номиналом 10 кОм Рисунок 2

8 Оформление результатов поверки

- 8.1 Результаты поверки, измерений и вычислений вносят в протокол поверки произвольной формы.
- 8.2 При положительных результатах поверки оформляют свидетельство о поверке датчика или делают отметку в паспорте на датчик, в соответствии с приказом Минпромторга России от 2 июля 2015 г. №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». Знак поверки наносится на свидетельство о поверке или в паспорте датчика.
- 8.3 При отрицательных результатах поверки датчики к эксплуатации не допускают и выдают «Извещение о непригодности к применению» с указанием причин в соответствии с приказом Минпромторга России от 2 июля 2015 г. №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Раздел 8 (Измененная редакция, Изм. № 1)