УТВЕРЖДАЮ

Первый заместитель генерального директора –

заместитель по научной работе ФГУИ «ВНИИФТРИ»

А.Н. Щипунов

«24 » остебре 2016 г.

Инструкция

Анализаторы цепей векторные AV3672A/B/C/D

МЕТОДИКА ПОВЕРКИ

651-16-28 МП

1 Общие положения

- 1.1 Настоящая методика распространяется на анализаторы цепей векторные AV3672A/B/C/D (далее по тексту анализаторы), фирмы 41 институт корпорации «China Electronics Technology Group», и устанавливает методы и средства первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год.

2 Операции поверки

2.1 При поверке анализаторов выполнить работы в объеме, указанном в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики		е операции
		первичной поверке (ввозе импорта)	периодиче- ской по- верке
1 Внешний осмотр	8.1	да	да
2 Опробование	8.2	да	да
3 Идентификация программного обеспечения	8.3	да	да
4 Определение относительной погрешности уста- новки частоты источника выходного сигнала	8.4	да	да
5 Определение значений уровня гармонических со- ставляющих в выходном сигнале	8.5	да	да
6 Определение максимального уровня мощности выходного сигнала и допускаемой абсолютной по- грешности установки уровня мощности выходного сигнала	8.6	да	да
7 Определение относительной погрешности нели- нейности установки уровня мощности выходного сигнала	8.7	да	да
8 Определение шума трассы	8.8	да	да
 Определение динамического диапазона измерения коэффициента передачи 	8.9	да	да
10 Определение корректированных характеристик	8.10	да	да
11 Определение времени спада/нарастания импульсной характеристики (только для опции 008)	8.11	да	да
12 Определение коэффициента переключения импульсной модуляции (только для опции 008)	8.12	да	да

2.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

3 Средства поверки

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, представленное в таблице 2.

	David Co	_					-
ш	a	O.	П	и	П	a	2

Номер		Наименование и тип (условное обозначение) основного или вспомогательного
пункта	ме-	средства поверки; обозначение нормативного документа, регламентирующего
тодики верки	по-	технические требования, и (или) метрологические и основные технические характеристики средства поверки

Номер пункта ме- тодики по- верки	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
8.4	Частотомер электронно-счётный Agilent 53152A с опцией 001 (пределы допускаемой относительной погрешности измерений частоты $\pm 1\cdot 10^{-8}$; диапазон частот от 10 Γ ц до 46 Γ Γ ц)
8.5	Анализатор спектра FSW67 (диапазон частот от 2 Γ ц до 67 Γ Γ ц, пределы допускаемой абсолютной погрешности измерения уровня в диапазоне от минус 70 дБ до 0 дБ \pm (от 0,37 до 2,8) дБ)
8.6	Измеритель мощности N1914A с преобразователем измерительным N8487A пределы допускаемой относительной погрешности измерений мощности ± (4÷6)%.
8.9, 8.10	Набор мер коэффициентов передачи и отражения 85056A, диапазон частот от 0 до 50 ГГц, присоединительный размер 2,4 мм; набор мер коэффициентов передачи и отражения 85052B, диапазон частот от 0 до 26,5 ГГц, присоединительный размер 3,5 мм.
8.11	Преобразователь измерительный N1922A (для моделей AV3672A/B) или N1924A (для моделей AV3672C/D) (диапазон рабочих частот от 0,05 до 40 ГГц, пределы допускаемой относительной погрешности коэффициента калибровки в диапазоне частот от 4,3 % до 6 %) (рег. № 57975-14); блок измерительный ваттметра N1911A (для моделей AV3672A/B) или N1913A (для моделей AV3672C/D) (границы допускаемой относительной погрешности установки выходной мощности сигнала калибратора ± 0,4 %) (рег. № 57386-14).
8.12	Анализаторы источников сигналов R&S FSUP50 (диапазон рабочих частот от 10 МГц до 50 ГГц) (рег. № 37175-08).

- 3.2 Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.
 - 3.3 Все средства поверки должны быть исправны и иметь свидетельства о поверке.
 - 4 Требования к квалификации поверителей
- 4.1 К проведению поверки анализаторов допускается инженерно-технический персонал со среднетехническим или высшим образованием, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющие право на поверку (аттестованными в качестве поверителей).
 - 5 Требования безопасности
- При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 5.2 К работе с анализаторами допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, ГОСТ Р 51350-99, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.
- 5.3 При проведении поверки необходимо принять меры защиты от статического напряжения, использовать антистатические заземлённые браслеты и заземлённую оснастку. Запрещается проведение измерений при отсутствии или неисправности антистатических защитных устройств.
 - 6 Условия поверки
 - 6.1 Поверку проводить при следующих условиях:
 - температура окружающего воздуха, 0 С 23 \pm 5*;

- относительная влажность воздуха, % от 5 до 70;
- атмосферное давление, мм рт. ст. от 626 до 795;
- напряжение питания, В от 100 до 250;
- частота, Гц от 50 до 60.
- *температура выбирается в соответствии с руководствами по эксплуатации средств поверки. Все средства измерений, использующиеся при поверке анализаторов, должны работать в нормальных условиях эксплуатации.

7 Подготовка к поверке

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- выполнить операции, оговорённые в документации изготовителя на поверяемый генератор по его подготовке к работе;
- выполнить операции, оговорённые в РЭ на применяемые средства поверки по их подготовке к измерениям;
 - осуществить прогрев приборов для установления их рабочих режимов.
 - 8 Проведение поверки
 - 8.1 Внешний осмотр
 - 8.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений и ослабление элементов, чёткость фиксации их положения;
- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность печатей и пломб;
 - наличие маркировки согласно требованиям эксплуатационной документации.
- 8.1.2 Результаты поверки считать положительными, если выполняются все перечисленные требования. В противном случае анализатор бракуется.
 - 8.2 Опробование
 - 8.2.1 Подключить анализатор к сети питания. Включить прибор согласно РЭ.
- 8.2.2 Убедиться в возможности установки режимов измерений и настройки основных параметров и режимов измерений анализатора.
- 8.2.3 Результаты опробования считать положительными, если при включении отсутствуют сообщения о неисправности и анализатор позволяет менять настройки параметров и режимы работы.
 - 8.3 Идентификация программного обеспечения

Проверку соответствия заявленных идентификационных данных программного обеспечения (ПО) генератора проводить в следующей последовательности:

- проверить наименование ПО;
- проверить идентификационное наименование ПО;
- проверить номер версии (идентификационный номер) ПО;
- определить цифровой идентификатор ПО (контрольную сумму исполняемого кода).
 Для расчёта цифрового идентификатора применяется программа (утилита) «MD5_FileChecker».
 Указанная программа находится в свободном доступе сети Internet (сайт www.winmd5.com).

Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведённым в таблице 3.

Таблипа 3

таолица 5				
Наименование ПО	Идентификацион- ное наименование ПО	Номер вер- сии ПО (идентифи- кационный номер)	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления идентифи- катора ПО

Наименование ПО	Идентификацион- ное наименование ПО	Номер вер- сии ПО (идентифи- кационный номер)	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления идентифи- катора ПО
AV3672A/B/C/D	AV3672A/B/C/D An- alyzer Firmware	V1.9.04	-	

8.4 Определение относительной погрешности установки частоты источника выходного сигнала

8.4.1 Соединить оборудование в соответствии с рисунком 1. и прогреть его в течении 60 минут.

Рисунок 1.

- 8.4.2 Провести предварительную установку режима работы анализатора цепей. Для этого нажать на кнопку "RESET" на передней панели анализатора.
- 8.4.3 Установить анализатор в режим генерации непрерывного сигнала. Для этого последовательно нажать кнопки [Stimulus] \rightarrow [Sweep] \rightarrow [Sweep] \rightarrow [CW], нажать кнопку [Freq] и ввести значение частоты выходного сигнала равное 10 ГГц.
 - 8.4.4 Нажать последовательно кнопки [Stimulus]→[Trigger]→[Hold].
 - 8.4.5 Считать показания частотомера.
- 8.4.6 Результаты поверки считать удовлетворительными, если измеренные значения частоты выходного сигнала анализатора находятся в пределах между 9 999 999 000 Γ ц и 10 000 001 000 Γ ц, что соответствует относительной погрешности частоты \pm $1\cdot10^{-7}$.

8.5 Определение значений уровня гармонических составляющих в выходном сигнале

8.5.1 Соединить оборудование в соответствии с рисунком 2.

Рисунок 2.

- 8.5.2 Провести предварительную установку режима работы анализатора цепей. Для этого нажать на кнопку "RESET" на передней панели анализатора.
 - 8.5.3 Нажать последовательно кнопки [Channel] → [Hardware config] → [Path config].
 - 8.5.4 Выбрать Filtering mode для портов 1 и 3.
 - 8.5.5 Нажать последовательно кнопки [Sweep] \rightarrow [Sweep time] \rightarrow [10] и ENTER.

- 8.5.6 Нажать последовательно кнопки [Sweep] \rightarrow [Sweep type] \rightarrow [CW] \rightarrow [Freq], и ввести значение частоты выходного сигнала равное 10 МГц.
- 8.5.7 Установить уровень выходного сигнала анализатора цепей равным минус 5 дБ/мВт.
- 8.5.8 Установить значение центральной частоты анализатора спектра равной 10 МГц и записать измеренное анализатором спектра значение уровня мощности выходного сигнала поверяемого анализатора цепей.
- 8.5.9 Установить значение центральной частоты анализатора спектра равной 20 МГц (вторая гармоника выходного сигнала векторного анализатора цепей) и записать измеренное анализатором спектра значение уровня мощности выходного сигнала проверяемого анализатора цепей.
- 8.5.10 Вычислить значения уровня гармонических составляющих в выходном сигнале как разницу между измеренными уровнями мощности сигнала второй гармоники и основного сигнала поверяемого анализатора цепей.
- 8.5.11 Повторить измерения при следующих значениях частоты выходного сигнала: 50 МГц, 100 МГц, 1 ГГц, 2 ГГц, 3 ГГц, 4 ГГц, 6 ГГц, 8 ГГц, 10 ГГц, 12 ГГц, 14 ГГц, 16 Гц, 18 ГГц, 20 ГГц, 22 ГГц и 24 ГГц (в зависимости от модели поверяемого анализатора цепей).
 - 8.5.12 Повторить измерения для остальных портов анализатора цепей.
- 8.5.13 Результаты поверки считать удовлетворительными, если вычисленные значения уровня гармонических не превысил значений, указанных в таблице 4.

Таблица 4.

Для портов 1 и 3 моделей AV3672A/B/C/D	Уровень гармонических составляющих в выходном сигнале, дБс
от 10 МГц до 4 ГГц включ.	минус 51
св. 4 ГГц до 26,5 ГГц включ.	минус 60
Для портов 2 и 4 моделей AV3672A/B	
от 10 МГц до 4 ГГц включ.	минус 13
св. 4 ГГц до 26,5 ГГц включ.	минус 21
Для портов 2 и 4 моделей AV3672C/D	
от 10 МГц до 4 ГГц включ.	минус 13
св. 4 ГГц до 13,5 ГГц включ.	минус 21
св. 13,5 ГГц до 50 ГГц включ.	минус 60

8.6 Определение максимального уровня мощности выходного сигнала и допускаемой абсолютной погрешности установки уровня выходной мощности

- 8.6.1 Определение максимального уровня мощности выходного сигнала
- 8.6.1.1 Провести самокалибровку измерителя мощности.
- 8.6.1.2 Соединить оборудование в соответствии с рисунком 3.

AV3672

- 8.6.1.3 Провести предварительную установку режима работы анализатора цепей. Для этого нажать на кнопку "RESET" на передней панели анализатора.
 - 8.6.1.4 Нажать последовательно кнопки [Reset] \rightarrow [Power] \rightarrow [+20] и кнопку ENTER.

- 8.6.1.5 Нажать последовательно кнопки [Sweep] > [Sweep time] > [20] и кнопку ENTER.
 - 8.6.1.6 Нажать последовательно кнопки [Sweep points] \rightarrow [21] и кнопку ENTER.
- 8.6.1.7 Нажать последовательно кнопки [Freq] → [Starting freq] и ввести значение начальной частоты выходного сигнала, равное 10 МГц.
- 8.6.1.8 Нажать кнопку [Ending freq] и ввести значение конечной частоты выходного сигнала, равное 50 МГц.
- 8.6.1.9 Измерить измерителем мощности наименьшее значение уровня мощности на выходе порта 1 поверяемого анализатора цепей в установленном диапазоне частот и записать полученное значение в таблицу 5.

Таблица 5.

Диапазон частот	Максимальный уровень мощности выходного с бочем диапазоне частот, дБ/мВт:					па в ра-
		Порты	1 и 3		Порты 2 и 4	
AV3672A/B	Режим ф ци		гра- Режим высокой мощности			
	доп.	изм.	доп.	изм.	доп.	изм.
от 10 МГц до 50 МГц включ.	1		9		13	
св. 50 МГц до 4 ГГц включ.	0		6		13	
	до	п.	ИЗ	M.		
св. 4 ГГц до 10 ГГц включ.	1	3			10	
св. 10 ГГц до 13,5 ГГц включ.	8	3			8	
св. 10 ГГц до 13,5 ГГц включ.	(5			5	
св. 13,5 ГГц до 26,5 ГГц включ.		2			0	
AV3672C/D	Порты 1 и 3				Порты 2 и 4	
	Режим фильтрации		Режим высокой мощности			
	доп.	изм.	доп.	изм.	доп.	изм.
от 10 МГц до 50 МГц включ.	1		9		11	
св. 50 МГц до 4 ГГц включ.	0		5		10	
	д	оп.	из	BM.		
св. 4 ГГц до 13,5 ГГц включ.		6			6	
св. 13,5 ГГц до 40 ГГц включ.		7			7	
св. 40 ГГц до 47 ГГц включ.		2			2	
св. 47 ГГц до 50 ГГц включ.	мин	нус 8			минус 8	

- 8.6.1.10 Повторить измерения для всех режимов работы, диапазонов частот выходного сигнала и для всех портов анализатора цепей в соответствии с таблице5.
- 8.6.1.11 Результаты поверки считать удовлетворительными, если значения максимального уровня мощности выходного сигнала в рабочем диапазоне частот соответствуют указанным в таблице 5.
- 8.6.2 Определение допускаемой абсолютной погрешности установки уровня мощности выходного сигнала
 - 8.6.2.1 Провести самокалибровку измерителя мощности.
 - 8.6.2.2 Соединить оборудование в соответствии с рисунком 3.
- 8.6.2.3 Нажать последовательно кнопки [Reset] \rightarrow [Sweep] \rightarrow [Sweep time] \rightarrow [10] и кнопку ENTER.
 - 8.6.2.4 Нажать кнопку [Power] \rightarrow [-5] и кнопку ENTER.
 - 8.6.2.5 Нажать кнопку [Sweep points] \rightarrow [21] и кнопку ENTER.

- 8.6.2.6 Нажать кнопку [Freq] и ввести значение начальной частоты выходного сигнала, равное 10 МГц и конечной частоты выходного сигнала, равное 13,5 МГц.
- 8.6.2.7 Измерить максимальное $A_{\text{макс.}}$ и минимальное $A_{\text{мин.}}$ значения уровня мощности выходного сигнала анализатора цепей в установленном диапазоне частот измерителем мощности относительно установленного значения уровня выходного сигнала (минус 5 дБ/мВт), и вычислить значения $\Delta_1 = A_{\text{уст.}} A_{\text{макс.}}$ и $\Delta_2 = A_{\text{уст.}} A_{\text{мин.}}$ между измеренными максимальным и минимальным значениями и установленным $A_{\text{уст.}}$ уровнем мощности выходного сигнала анализатора цепей.
- 8.6.2.8 Определить абсолютную погрешность установки уровня мощности выходного сигнала Δ_A , как наибольшее из значений Δ_1 и Δ_2 .
- 8.6.2.9 Повторить операции для всех диапазонов частот выходного сигнала и для всех портов анализатора цепей
- 8.6.2.10 Результаты поверки считать удовлетворительными, если значения погрешности установки уровня мощности выходного сигнала $\Delta_{\rm A}$ соответствуют указанным в таблице 6. Таблица 6.

Диапазон частот	Пределы допускаемой абсолютной погрешности установки уровня мощности выходного сигнала, дБ
от 10 МГц до 13,5 ГГц включ.	± 2,0
св. 13,5 ГГц до 26,5 ГГц включ.	± 3,0
св. 26,5 ГГц до 40 ГГц включ.	± 3,0
св. 40 ГГц до 43,5 ГГц включ.	± 4,0
св. 43,5 ГГц до 50 ГГц включ.	± 4,0

8.7 Определение относительной погрешности нелинейности установки уровня мощности выходного сигнала

8.7.1 Соединить оборудование в соответствии с рисунком 4.

Рисунок 4.

- 8.7.2 Нажать последовательно кнопки [Reset] → [Response] →[Meas] →[Meas...] и [Receiver].
 - 8.7.3 Активировать [В] и [Source port] и выбрать порт 1.
 - 8.7.4 Нажать ОК для измерения нелинейности порта 1.
- 8.7.5 Нажать последовательно кнопки [Channel] \rightarrow [More] \rightarrow [Hardware setting] \rightarrow [Graphical config].
 - 8.7.6 Выбрать режим [Low-band high-power] и нажать [OK].
 - 8.7.7 Нажать последовательно кнопки [Power] \rightarrow [-10] \rightarrow [OK].
 - 8.7.8 Нажать последовательно кнопки [Analysis] → [Save] → [Normalization].
- 8.7.9 Нажать последовательно кнопки [Power] \rightarrow [-25] и ENTER для установления значения уровня мощности выходного сигнала равным минус 25 дБ/мВт.
- 8.7.10 После окончания измерений нажать последовательно кнопки [Marker] \rightarrow [Marker search] для определения максимального $A_{\text{макс}}$ и минимального $A_{\text{мин}}$ и вычислить значения Δ_1

 $=A_{ycr.}$ - $A_{makc.}$ и $\Delta_2=A_{ycr.}$ - $A_{muh.}$ между измеренными максимальным и минимальным значениями и установленным $A_{ycr.}$ уровнем мощности выходного сигнала анализатора цепей.

8.7.11 Определить абсолютную погрешность установки уровня мощности выходного сигнала Δ_A , как наибольшее из значений Δ_1 и Δ_2 .

8.7.12 Повторить операции для всех диапазонов частот выходного сигнала и для всех портов анализатора цепей

8.7.13 Результаты поверки считать удовлетворительными, если значения погрешности установки уровня мощности выходного сигнала Δ_A соответствуют значению \pm 2,0 дБ.

8.8 Определение шума трассы

8.8.1.1 Провести предварительную установку режима работы анализатора цепей. Для этого нажать на кнопку "RESET" на передней панели анализатора.

8.8.2 Соединить оборудование в соответствии с рисунком 4.

Нажать последовательно кнопки [Power] →[-5] и ENTER

8.8.3 Нажать последовательно кнопки [Sweep] \rightarrow [Sweep time] \rightarrow [3] и [OK].

8.8.4 Нажать последовательно кнопки [Sweep] \rightarrow [Sweep type] \rightarrow [CW] и ввести значение частоты выходного сигнала равное 10 МГц.

8.8.5 Нажать последовательно кнопки [Analysis] → [Trace statistics] → [Trace statistics] ON].

8.8.6 Измерить амплитудный шум S_{12} , нажимая кнопки [Meas] \rightarrow [S12].

8.8.7 Измерить фазовый шум S_{12} , нажимая кнопки [Response] \rightarrow [Format] \rightarrow [Phase].

8.8.8 Измерить фазовый шум S_{21} , нажимая кнопки [Meas] \rightarrow [S21].

8.8.9 Измерить фазовый шум S_{21} , нажимая кнопки тмеаз \rightarrow S_{21} .

кнопки 【Response】 → 【Format】 → 【Logarithm amplitude】.

8.8.10 Соединить порты 3 и 4.

8.8.11 Измерить амплитудный шум S_{34} , нажимая кнопки [Meas] \rightarrow [S34].

8.8.12 Измерить фазовый шум S_{34} , нажимая

кнопки $\{Response\} \rightarrow \{Format\} \rightarrow \{Phase\}$.

Таблица 7.

св. 1 ГГц до 26,5 ГГц включ.

св. 26,5 ГГц до 50 ГГц включ.

8.8.13 Измерить фазовый шум S_{43} , нажимая кнопки 【Meas】 \to 【S43】.

8.8.14 Измерить амплитудный шум S_{43} , нажимая кноп-ки [Response] \to [Format] \to [Logarithm amplitude].

8.8.15 Результаты поверки считать удовлетворительными, если значения амплитудного и фазового шумов соответствуют указанным в таблице 7.

Шум трасс	сы для моделей AV3672A/B	
Рабочий диапазон частот	Амплитуда, дБ	Фаза, 0
от 10 МГц до 100 МГц включ.	0,007	0,051
св. 100 МГц до 13,5 ГГц включ.	0,002	0,015
св. 13,5 ГГц до 22,5 ГГц включ.	0,002	0,042
св. 22,5 ГГц до 24 ГГц включ.	0,003	0,054
св. 24 ГГц до 26,5 ГГц включ.	0,005	0,054
Шум трас	сы для моделей AV3672C/D	
Рабочий диапазон частот	Амплитуда, дБ	Фаза, 0
от 10 МГц до 50 МГц включ.	0,200	1,0
св. 50 МГц до 500 МГц включ.	0,020	0,7
св. 500 МГц до 1 ГГц включ.	0,005	0,04

0,004

0.008

0.05

0,06

нажимая

8.9 Определение динамического диапазона измерения коэффициента передачи

8.9.1 Соединить оборудование в соответствии с рисунком 5.

Рисунок 5.

Провести предварительную установку режима работы анализатора цепей. Для этого нажать на кнопку "RESET" на передней панели анализатора. Нажать последовательно кнопки [Power] → [+20] и ENTER. Нажать последовательно кнопки [Channel] → [Hardware config] → [Path config]. Выбрать режим высокой мощности для для портов 1 и 3.

- 8.9.2 Нажать последовательно кнопки [Meas] → [S12].
- 8.9.3 Нажать последовательно кнопки [Scale] → [Reference value] и ввести значение [-100].
 - 8.9.4 Нажать последовательно кнопки [Sweep] → [Sweep points], и ввести число 51.
- 8.9.5 Нажать последовательно кнопки [Response] \rightarrow [Aveg] \rightarrow [IF bandwidth], и ввести значение частоты 1 Γ ц.
- 8.9.6 Нажать последовательно кнопки [Cal] → [Non-guided cal] и [Thru response and isolation].
- 8.9.7 Нажать кнопку [Choose cal kit] (выбор используемого калибровочного набора), нажать кнопку [Thru] для начала проведения калибровки.
- 8.9.8 После окончания калибровки отсоединить кабель и установить две согласованные нагрузки из калибровочного комплекта 85052B (для моделей AV3672A/B) или 85056A (для моделей AV3672C/D), как показано на рисунке 6.

Рисунок 6.

- 8.9.9 Выбрать параметр [Load]. Выбрать [Enable aveg] в выпадающем диалоговом окне. Установить значение averaging factor равное 8, и продолжите калибровку. После окончания калибровки нажать кнопку [ОК].
- 8.9.10 Нажать последовательно кнопки [Response] \rightarrow [Aveg] \rightarrow [Aveg factor] и ввести цифру 8.
- 8.9.11 Нажать последовательно кнопки 【Marker】 → 【Marker search】 → 【Marker search】. Выбрать параметр [Max.] для режима [Search type] в выпадающем окне. Выбрать параметр [User setup 1] для режима [Search domain] и установить начальное значение частоты для режима [User domain] равным 10 МГц и конечное значение частоты равным 500 МГц.

Нажать [ОК], чтобы записать значение маркера как динамического диапазона измерения коэффициента передачи для установленного диапазона частот.

8.9.12 Изменить диапазон частот в соответствии с таблицей 8 для режима [User domain] и найти максимальное значение динамического диапазона измерения коэффициента передачи в этом частотном диапазоне.

8.9.13 Измерить динамический диапазон для порта 2, нажимая кнопки [Meas] \rightarrow [S21] и повторить п.п. 8.9.7 – 8.9.13.

8.9.14 Соединить оборудование в соответствии с рисунком 7.

AV3672

Рисунок 7.

- 8.9.15 Измерить динамический диапазон для порта 3, для чего:
- 8.9.16 Нажать кнопки [Meas] → [S34].
- 8.9.17 Нажать последовательно кнопки [Cal] \rightarrow [Non-guided cal] и [Thru response and isolation].
- 8.9.18 Нажать кнопку [Choose cal kit] (выбор используемого калибровочного набора), нажать кнопку [Thru] для начала проведения калибровки.
- 8.9.19 После окончания калибровки отсоединить кабель и установить две согласованные нагрузки из калибровочного комплекта 85052B (для моделей AV3672A/B) или 85056A (для моделей AV3672C/D), как показано на рисунке 8.

AV3672 Series VNA

Рисунок 8.

- 8.9.20 Выбрать параметр [Load]. Выбрать [Enable aveg] в выпадающем диалоговом окне. Установить значение averaging factor равное 8, и продолжите калибровку. После окончания калибровки нажать кнопку [OK].
- 8.9.21 Нажать последовательно кнопки [Response] \rightarrow [Aveg] \rightarrow [Aveg factor] и ввести цифру 8.
- 8.9.22 Нажать последовательно кнопки 【Marker】 → 【Marker search】 → 【Marker search】. Выбрать параметр [Max.] для режима [Search type] в выпадающем окне. Выбрать параметр [User setup 1] для режима [Search domain] и установить начальное значение частоты для режима [User domain] равным 10 МГц и конечное значение частоты равным 500 МГц. Нажать [OK], чтобы записать значение маркера как динамического диапазона измерения коэффициента передачи для установленного диапазона частот.
- 8.9.23 Измерить динамический диапазон для порта 4, для чего нажать последовательно кнопки [Meas] \rightarrow [S43] .

8.9.24 Повторить п.п. 8.9.18 – 8.9.23.

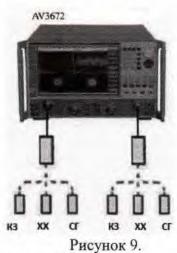

8.9.25 Результаты поверки считать удовлетворительными, если значения динамического диапазона измерения коэффициента передачи соответствуют указанным в таблице 8.

Таблица 8.

Диапазон частот	Динамический диапазон измерения коэффи- циента передачи в рабочем диапазоне частот для моделей AV3672A/B, дБ
от 10 МГц до 500 МГц включ.	90
св. 500 МГц до 4 ГГц включ.	120
св. 4 ГГц до 10 ГГц включ.	127
св. 10 ГГц 13,5 ГГц включ.	120
св. 13,5 ГГц до 20 ГГц включ.	120
св. 20 ГГц до 24 ГГц включ.	115
св. 24 ГГц до 26,5 ГГц включ.	110
Диапазон частот	Динамический диапазон измерения коэффи- циента передачи в рабочем диапазоне частот для моделей AV3672C/D, дБ
от 10 МГц до 500 МГц включ.	74
св. 500 МГц до 4 ГГц включ.	118
св. 4 ГГц до 10 ГГц включ.	119
св. 10 ГГц 13,5 ГГц включ.	118
св. 13,5 ГГц до 20 ГГц включ.	115
св. 20 ГГц до 24 ГГц включ.	115
св. 24 ГГц до 26,5 ГГц включ.	115
св. 26,5 ГГц до 35 ГГц включ.	110
св. 35 ГГц до 47 ГГц включ.	105
св. 47 ГГц до 50 ГГц включ.	92

8.10 Определение корректированных характеристик

8.10.1 Прогреть анализатор цепей в течении 60 минут и провести полную двухпортовую калибровку, для чего:

- 8.10.2 Соединить оборудование в соответствии с рисунком 9.
- 8.10.3 Провести предварительную установку режима работы анализатора цепей. Для этого нажать на кнопку "RESET" на передней панели анализатора.
- 8.10.4 Установить уровень выходного сигнала анализатора цепей равным минус 5 дБ/мВт, для чего нажать последовательно кнопки [Power]→[-5] и ENTER.
 - 8.10.5 Нажать последовательно кнопки [Sweep]→[Sweep points] и ввести значение 201.

- 8.10.6 Нажать последовательно кнопки [Response]→[Aveg]→[IF bandwidth] и ввести значение 100 Гп.
 - 8.10.7 Нажать кнопку [Cal] и выбрать [Non-guide cal]→[Full dual-port SOLT].
 - 8.10.8 Нажать кнопку [Choose cal kit] (выбор типа калибровочного комплекта).
- 8.10.9 Подключать последовательно нагрузку холостого хода (XX), короткозамкнутую нагрузку (КЗ) и согласованную нагрузку (СГ) к двум портам. Выбрать режимы [Open-circuit device], [Short-circuit device] и [Load] и запустить калибровку SOL.
- 8.10.10 После окончания калибровки соединить порты 1 и 2 в соответствии с рисунком 4. Выбрать режим [Thru] для начала калибровки Т.
 - 8.10.11 Нажать кнопку [ОК] после окончания полной двухпортовой калибровки.
- 8.10.12 Нажать последовательно кнопки 【Search】 → 【Marker search】. Выбрать режим [User setup 1] в разделе [Search domain] и установить начальное значение диапазона частоты в разделе [User domain] равным 10 МГц, конечное значение диапазона частоты равным 2 ГГц и нажать [OK]. Установить параметр [Search type] как "Мах. value (Максимальное значение)" и "Min. value (Минимальное значение)".
- 8.10.13 Измерить коэффициент передачи порта 1, нажимая последовательно кнопки [Meas] \rightarrow [S12].
- 8.10.14 Изменить начальное и конечное значение диапазона частоты в соответствии с таблицей 9. Определить "Max.value" and "Min. value" в диапазоне частот и записать худшее значение как результат измерений коэффициента передачи порта 1.

Таблица 9.

Корректированн	ые характе	ристики для	моделей AV36	672А/В, дБ	
Частотный диапазон	Направ- лен- ность			Коэффици- ент передачи	Коэффици- ент отражения
от 10 МГц до 2 ГГц включ.	48	40	48	± 0,10	± 0,04
св. 2 ГГц до 13,5 ГГц включ.	44	30	44	± 0,11	± 0,04
св.13,5 ГГц до 26,5 ГГц	44	30	44	± 0,12	± 0,05
Корректиро	ванные хар	актеристики	для моделей А	AV3672C/D,	дБ
от 10 МГц до 2 ГГц включ.	42	36	42	± 0,10	± 0,04
св. 2 ГГц до 13,5 ГГц включ.	42	31	42	± 0,11	± 0,04
св.13,5 ГГц до 40 ГГц включ.	38	28	37	± 0,16	± 0,03
св.40 ГГц до 50 ГГц	36	27	35	± 0,20	± 0,04

- 8.10.15 Измерить коэффициент передачи порта 2, для чего:
- 8.10.16 Нажать последовательно кнопки [Meas] → [S21].
- 8.10.17 Изменить начальное и конечное значение диапазона частоты в соответствии с таблицей 9. Определить "Max.value" and "Min. value" в диапазоне частот и записать худшее значение как результат измерений коэффициента передачи порта 2.
 - 8.10.18 Измерить согласование нагрузки порта 1, для чего:
 - 8.10.19 Нажать последовательно кнопки [Meas] → [S11].
- 8.10.20 Отсоединить, а затем присоединить тестовый кабель. Изменить начальное и конечное значение диапазона частоты в соответствии с таблицей 9 и определить максимальное значение уровня сигнала в диапазоне частот как значение согласования нагрузки порта 1.
 - 8.10.21 Измерить согласование нагрузки порта 2, для чего:
- 8.10.22 Нажать последовательно кнопки [Meas] \rightarrow [S22]. Изменить начальное и конечное значение диапазона частоты в соответствии с таблицей 9 и определить максимальное значение уровня сигнала в диапазоне частот как значение согласования нагрузки порта 2.
 - 8.10.23 Измерить коэффициент отражения порта 1, для чего:

- 8.10.24 Присоединить короткозамкнутую нагрузку к порту 1. Нажать последовательно кнопки [Meas] \rightarrow [S11]. Затем нажать последовательно кнопки [Analysis] \rightarrow [Save] \rightarrow [Normalization].
- 8.10.25 Записать худшее значение уровня сигнала после нескольких периодов прохождения измерений как коэффициент отражения порта 1.
- 8.10.26 Изменить начальное и конечное значение диапазона частоты в соответствии с таблицей 9 и определить максимальное значение уровня сигнала в диапазоне частот как значение коэффициент отражения порта 1.
 - 8.10.27 Измерить значение согласования источника сигнала порта 1, для чего:
- 8.10.28 Нажать последовательно кнопки [Analysis] \rightarrow [Save] \rightarrow [Track operation] \rightarrow [Data + memory].
 - 8.10.29 Присоединить нагрузку холостого хода к порту 1.
- 8.10.30 Нажать последовательно кнопки [Scale] \rightarrow [Reference value], и ввести значение 50.
 - 8.10.31 Изменить начальное и конечное значение частоты в разделе [User domain].
 - 8.10.32 Определить максимальное значение уровня сигнала в диапазоне частот.
- 8.10.33 Вычислить значение согласования источника сигнала порта 1 как разницу между максимальным значением уровня сигнала в диапазоне частот минус 6 дБ.
 - 8.10.34 Измерить направленность порта 1, для чего:
 - 8.10.35 Присоединить согласованную нагрузку к порту 1.
- 8.10.36 Нажать последовательно кнопки [Analysis] \rightarrow [Save] \rightarrow [Track operation] \rightarrow [Close]. 8.10.31 Изменить начальное и конечное значение частоты в разделе [User domain], и определить максимальное значение уровня сигнала в диапазоне частот как значение направленности порта 1.
 - 8.10.37 Измерить коэффициент отражения порта 2, для чего:
 - 8.10.38 Присоединить согласованную нагрузку к порту 2.
- 8.10.39 Нажать последовательно кнопки [Meas]→[S22], затем нажать кнопки [Analysis]→[Save]→[Normalization].
- 8.10.40 Записать худшее значение уровня сигнала после нескольких периодов прохождения измерений как коэффициент отражения порта 2.
 - 8.10.41 Повторить измерения для всех диапазонов частот из таблицы 9.
 - 8.10.42 Измерить согласование источника порта 2, для чего:
- 8.10.43 Нажать последовательно кнопки [Analysis] \rightarrow [Save] \rightarrow [Track operation] \rightarrow [Close].
 - 8.10.44 Присоединить нагрузку холостого хода к порту 2.
- 8.10.45 Нажать последовательно кнопки [Scale] \rightarrow [Reference value], и ввести значение 50.
- 8.10.46 Изменить начальное и конечное значение частоты в разделе [User domain], и определить максимальное значение уровня сигнала в диапазоне частот.
- 8.10.47 Вычислить значение согласования источника сигнала порта 2 как разницу между максимальным значением уровня сигнала в диапазоне частот минус 6 дБ.
 - 8.10.48 Измерить направленность порта 2, для чего:
 - 8.10.49 Присоединить согласованную нагрузку к порту 2.
- 8.10.50 Нажать последовательно кнопки [Analysis] → [Save] → [Track operation] → [Close].
- 8.10.51 Изменить начальное и конечное значение частоты в разделе [User domain], и определить максимальное значение уровня сигнала в диапазоне частот как значение направленности порта 2.
- 8.10.52 При поверке четырехпортового анализатор цепей выполнить полную двухпортовую калибровку для портов 3 и 4 и провести измерения, как указано выше.
- 8.10.53 Результаты поверки считать удовлетворительными, если полученные значения характеристик не превышают указанных в таблице 9.

8.11 Определение времени спада/нарастания импульсной характеристики

8.11.1 Прогреть оборудование в течении 60 минут.

8.11.2 Соединить оборудование в соответствии с рисунком 10.

Рисунок 10.

- 8.11.3 Провести предварительную установку режима работы анализатора цепей. Для этого нажать на копку "RESET" на передней панели анализатора.
- 8.11.4 Присоединить преобразователь мощности к калибровочному порту блока ваттметра и откалибровать ваттметр.
- 8.11.5 На анализаторе последовательно нажать кнопки [Power (Мощность)]>[-10] и ENTER.
- 8.11.6 Нажать кнопки [Scanning (Сканирование)]>[Scanning type (Тип сканирования)]> [Масго (Макрорежим)] и ввести значение центральной частоты равное 500 МГц.
- 8.11.7 Нажать кнопки [Macro (Макрорежим)]>[Pulse (Импульс)]>[Narrow band pulse (Узкополосный импульс)]>[Source modulation (Модуляция источника)] (интервал: 150 нс; ширина импульса: 60 нс; диапазон промежуточной частоты: 60 нс)>[Pulse mode on/off (Импульсный режим Вкл./Выкл.)]>[Calculate (Вычислить)]>[Аррlу (Применить)] для активации импульсного режима.
- 8.11.8 Изменить частоту векторного анализатора цепей и блока ваттметра в соответствии с таблицей 10.

Таблица 10.

Допустимое время спада/нарастания импульсной характеристики	Частота	Полученное время спа- да/нарастания импульсной ха- рактеристики
Время нарастания ≤30 нс	500 МГц	
	10 ГГц	
	26,5 ГГц	
Время спада ≤30 нс	500 МГц	
	10 ГГц	
	26,5 ГГц	

- 8.11.9 Повторить п.п. 8.11.5 8.11.7.
- 8.11.10 Результаты поверки считать удовлетворительными, если полученные значения времени спада/нарастания импульсной характеристики не превышают указанных в таблице 10.

8.12 Определение коэффициента переключения импульсной модуляции

- 8.11.1 Прогреть оборудование в течении 60 минут.
- 8.11.2 Соединить оборудование в соответствии с рисунком 11.

Рисунок 11.

- 8.12.1 Провести предварительную установку режима работы анализатора цепей. Для этого нажать на копку "RESET" на передней панели анализатора.
- 8.12.2 Нажать кнопки [Scanning (Сканирование)]>[Scanning type (Тип сканирования)]>[CW (Модуляция)]>[Frequency (Частота)] и ввести значение 10 МГц.
 - 8.12.3 Установить центральную частоту анализатора сигналов FSUP 50 равной 10 МГц.
- 8.12.4 Измерить анализатором сигналов мощность сигнала P(ON). Это значение мощности равно значению мощности, соответствующему входной импульсной модуляции, то есть "Pulse ON (Импульс Вкл.)".
- 8.12.5 Нажать кнопки [Macro (Макрорежим)]>[Pulse (Импульс)]>[Configuration (Конфигурация)]>[Pulse generator/modulator (Импульсный генератор/модулятор)].
 - 8.12.6 Выбрать вариант неиспользования внутреннего модулятора.
- 8.12.7 Нажать кнопки [Pulse mode (Импульсный режим)]>[Calculate (Вычисление)]>[Аррlу (Применить)] для активации импульсного режима анализатора. Поскольку подается внешний импульсный сигнал, эквивалентный входной сигнал обладает низкий мощностью, и устройство работает в режиме "Pulse OFF (Импульс Выкл.)".
- 8.12.8 Измерить мощность сигнала P(OFF) с помощью анализатора сигналов и записать ее значение.
- 8.12.9 Вычислить разницу между значениями мощности, измеренными в режимах "Pulse ON (Импульс Вкл.)" и "Pulse OFF (Импульс Выкл.)" как значение коэффициент переключения импульсной модуляции в проверяемой точке частоты.
- 8.12.10 Нажать кнопки [Масго (Макрорежим)]>[Pulse (Импульс)]>[Pulse mode on/off (Импульсный режим Вкл./Выкл.]> [Аррlу (Применить)] для отмены импульсного режима.
- 8.12.11 Изменить значение частоты в соответствии с таблицей 11 и повторить п.п. этапы (3) – (6) для получения коэффициента переключения импульсной модуляции в других точках частоты.

Таблица 11.

Допустимое значение коэффициента переключения импульсной модуляции, дБ	Частота	Полученное значение коэффициента переключения импульсной модуляции, дБ
≥ 64	10 МГц	
	500 МГц	
	1 ГГц	
≥ 80	10 ГГц	
	20 ГГц	
	26,5 ГГц	

8.12.12 Результаты поверки считать удовлетворительными, если полученные значения коэффициента переключения импульсной модуляции не превышают указанных в таблице 11.

9 Оформление результатов поверки

- 9.1 При положительных результатах поверки на анализаторы (техническую документацию) наносится оттиск поверительного клейма и/или выдается свидетельство установленной формы.
- 9.2 Значения характеристик, определённые в процессе поверки при необходимости заносятся в документацию.
- 9.3 В случае отрицательных результатов поверки применение анализатора запрещается, на него выдается извещение о непригодности фприменению с указанием причин.

Начальник отделения ФГУП «ВНИИФТРИ» О.В. Каминский