

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Зам. Генерального директора ФБУ «Ростест-Москва»

Е.В. Морин

(21» апреля 2015 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

МЕТОДИКА ПОВЕРКИ ТЕСЛАМЕТРЫ-ВЕБЕРМЕТРЫ УНИВЕРСАЛЬНЫЕ ТПУ-2В ТПКЛ.411171.010МП

1.p.61082-15

Москва 2015

1 Общие требования

- 1.1 Поверку ТПУ-2В проводят юридические лица, аккредитованные в установленном порядке на право поверки данных средств измерений. Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются действующими нормативными документами.
- 1.2 Поверке подлежат все вновь выпускаемые, выходящие из ремонта и находящиеся в эксплуатации ТПУ-2В.

Первичную поверку проводят при выпуске ТПУ-2В из производства и после его ремонта. Периодическую поверку проводят при эксплуатации ТПУ-2В, а также при его вводе в эксплуатацию, если срок хранения превысил установленный интервал между поверками.

1.3 Интервал между периодическими поверками составляет один год.

2 Операции и средства поверки

2.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Перечень операций при проведении поверки

	Номер	Проведение	операций при
Наименование операции	пункта документа по поверке	первичной поверке	периодическ ой поверке
Внешний осмотр	5.1	Да	Да
Опробование	5.2	Да	Да
Определение диапазона и относительной погрешности измерений магнитной индукции постоянного поля (режим «Тесламетр»)	5.3	Да	Да
Определение основной и дополнительной частотной относительной погрешности измерений магнитной индукции переменного и импульсного поля (режим «Тесламетр»)	5.4	Да	Да
Определение диапазона и относительной погрешности измерений потокосцепления (режим «Веберметр»)	5.5	Да	Да
Оформление результатов поверки	6	Да	Да

2.2 При проведении поверки должны применяться эталоны и средства измерений, указанные в таблице 2.

Таблица 2 – Перечень средств поверки

Номер пункта документа по поверке	Наименование и тип (условное обозначение) средства поверки; его основные метрологические и технические характеристики
5.2	1 Рабочий эталон 1 разряда единицы магнитной индукции в диапазоне от 0,01 до 20 мТл при частотах от 0 до 2000 Гц, регистрационный номер 3.2.ГМБ.0002.2014, в составе: 1.1 Мера магнитной индукции КПВК. Диапазон магнитной индукции от 0,01 до 20 мТл; неоднородность магнитного поля в сфере Ø 30 мм не более ± 0,1 %; рабочий диапазон частот от 0 до 2000 Гц; пределы допускаемой погрешности постоянной ± 0,2 %. 1.2 Источник питания постоянного тока GPR-11H30. Сила тока от 0,001 до 3 А; напряжение от 0 до 110 В; нестабильность не хуже 0,01 %. 1.3 Генератор сигналов низкочастотный ГЗ-118, нестабильность 4 % за 3 ч. 1.4 Вольтметр универсальный В7-78/1. Пределы измерений постоянного (переменного) напряжения 100 мВ / 1 / 10 / 100 / 1000 (750) В, погрешность 0,004 (0,09) %; пределы измерений постоянного (переменного) тока 10 / 100 мА / 1 / 3 А (1 / 3 А), погрешность 0,05 (0,15) % при частоте от 10 Гц до 20 кГц. 1.5 Катушки электрического сопротивления Р321 0,1; 1; 10 Ом. Класс точности 0,01. 1.6 Усилитель мощности низкой частоты DP2240. 2 Экран магнитный цилиндрический. Внутренний диаметр не менее 8 мм, коэффициент экранирования не менее 100
5.3	1 Рабочий эталон 2 разряда единицы магнитной индукции постоянного магнитного поля в диапазоне от 0,02 до 2,0 Тл, регистрационный номер 3.2.ГМБ.0001.2014, в составе: 1.1 Измеритель магнитной индукции Ш1-9. Диапазон измерений от 0,02 до 2 Тл. Пределы относительной допускаемой погрешности измерения однородного стабильного магнитного поля ± (0,01 + 0,1/Визм), %, где Визм — измеренное значение магнитной индукции, мТл. 1.2 Электромагнит однородного стабильного магнитного поля с источником питания. Диапазон магнитной индукции от 0,02 до 2 Тл; неоднородность магнитного поля в зазоре между полюсами 12 мм на расстоянии ± 5 мм от оси не более 0,01 %; нестабильность не хуже 0,01 % за 10 мин. 1.3 Экранированная катушка однородного стабильного магнитного поля с источником питания. Диапазон магнитной индукции от 0,02 до 0,4 Тл; неоднородность магнитного поля в рабочем объеме 17×11 мм не более 0,02 %; нестабильность не хуже 0,01 % за 10 мин. 1.4 Источник питания электромагнита и экранированной катушки. 2 Рабочий эталон 1 разряда рег. номер 3.2.ГМБ.0002.2014. 3 Экран магнитный цилиндрический.
5.4	Рабочий эталон 1 разряда единицы магнитной индукции в диапазоне от 0,01 до 20 мТл при частотах от 0 до 2000 Гц, регистрационный номер 3.2.ГМБ.0002.2014

Комплект	СИ,	который	используется	В	качестве	калибратора
магнитного потока, градуированного в вольт-секундах						

- 1 Калибратор многофункциональный 5522A (Fluke). Погрешность воспроизведения постоянного напряжения $2 \cdot 10^{-5} \cdot U$ [B] + 0,1 мкВ. Относительная погрешность, %, воспроизведения напряжения: 1 мкВ 10%; 10 мкB 1%; 100 мкB 0,1%.
 - 2 Калибратор времени интегрирования напряжения в составе:
- генератор-калибратор гармонических сигналов СК6-122. Коэффициент гармоник 0,001 %;
 - частотомер электронно-счетный 43-54. Нестабильность за год $1,5\cdot 10^{-7}$.

Примечание — Поверка тесламетра-веберметра по 5.5, как видно из описания процесса интегрирования прибором (см. 1.4.6 в ТПКЛ.411171.010РЭ), может быть сведена к определению погрешностей измерений двух параметров: частоты тактового генератора, которая определяет в т.ч. время интегрирования, и интеграла напряжения постоянного тока (в вольт-секундах) за установленное время при подаче на вход поверяемого тесламетра-веберметра нормированных значений напряжения. Этот подход реализован в комплекте СИ, который используется в качестве калибратора магнитного потока.

- 2.3 Применяемые при поверке эталоны и средства измерений должны иметь действующие свидетельства о поверке.
- 2.4 При проведении поверки допускается использование других эталонов и средств измерений с метрологическими характеристиками не хуже указанных в таблице 2.

3 Требования безопасности

5.5

3.1 При поверке должны выполняться требования безопасности, изложенные в 2.2 ТПКЛ.411171.010РЭ и в документации на применяемые средства поверки и оборудование.

4 Условия проведения поверки и подготовка к ней

- 4.1 Поверку тесламетров-веберметров проводить в спокойной магнитной обстановке (в помещении для испытаний отсутствуют значительные ферромагнитные массы и источники магнитных полей промышленной частоты и ее гармоник, изменения внешнего постоянного магнитного поля определяются только вариациями геомагнитного поля) в нормальных условиях по ГОСТ 22261:
 - температура окружающего воздуха + (20 ± 2) °C;
 - относительная влажность воздуха от 30 до 80 %;
 - атмосферное давление от 84,0 до 106,7 кПа;

Перед проведением поверки необходимо выдержать ТПУ-2В во включенном состоянии не менее 30 мин.

4.2 Операции, которые проводят со средствами поверки и с поверяемым ТПУ-2В, должны соответствовать указаниям, приведенным в эксплуатационной документации на них.

5 Проведение поверки

5.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

- соответствие комплектности ТПУ-2В;
- наличие эксплуатационной документации;

Тесламетры-веберметры универсальные ТПУ. Методика поверки. ТПКЛ.411171.010МП

- наличие маркировки тесламетра-веберметра и всех измерительных зондов;
- отсутствие дефектов, влияющих на работу ТПУ-2В.

Результаты поверки считают положительными, если: прибор поступил в поверку в комплекте с формуляром ТПКЛ.411171.010ФО; состав ТПУ-2В соответствует указанному в разделе 3 ТПКЛ.411171.010ФО; отсутствуют дефекты, влияющие на работу прибора.

5.2 Опробование

При опробовании выполнить следующие операции:

- 1) подготовить тесламетр-веберметр к работе, как указано в 2.3 ТПКЛ.411171.010РЭ;
- 2) подключить к прибору измерительный зонд «М»;
- 3) установить: режим работы «Тесламетр», вид магнитного поля «Переменное»;
- 4) поместить зонд «М» в рабочий объем меры магнитной индукции КПВК, включенной для воспроизведения переменного магнитного поля частоты 50 Гц;
- 5) установить значение магнитной индукции, близкое к 10 мТл, и измерить это значение на пределах измерения 10, 100 и 1000 мТл;
 - 6) повторить операции 4), 5) с зондом «С»;
 - 7) подключить к прибору блок усилителя с присоединенным зондом «И»;
 - 8) повторить операции 4), 5).

Результаты поверки считают положительными, если со всеми зондами производится измерение переменного магнитного поля с магнитной индукцией, близкой к 10 мТл.

- 5.3 Для определения диапазона и относительной погрешности измерений магнитной индукции постоянного магнитного поля выполнить следующие операции:
- 1) установить тесламетр-веберметр в режим измерения постоянного магнитного поля, установить количество измерений N=5;
- 2) расположить меру магнитной индукции КПВК так, чтобы ее ось совпадала с вектором магнитной индукции внешнего (геомагнитного) поля;
- 3) подключить к тесламетру-веберметру измерительный зонд «М», при необходимости установить нуль прибора;
- 4) поместить измерительный зонд в рабочий объем меры КПВК так, чтобы центр измерительного преобразователя совпал с центром рабочего объема меры;
- 5) последовательно устанавливая значения магнитной индукции в соответствии с таблицей 3 при обоих направлениях тока в мере, провести измерения и вычислить основную относительную погрешность δ_0 ,%, по формуле (1):

$$\delta_0 = [(B_{\text{H}} - B_0)/B_0] \cdot 100, \tag{1}$$

где:

 B_0 — установленное в мере по силе тока и постоянной меры значение магнитной индукции, м $T_{\rm J}$;

 B_{μ} –значение магнитной индукции, мТл, которое определяется по формуле (2):

$$B_{H} = (B_{+} - B_{-})/2; \tag{2}$$

- в этой формуле B_+ и B_- значения магнитной индукции, измеренные при обоих направлениях тока в мере;
- 6) подключить к тесламетру-веберметру измерительный зонд «С», при необходимости установить нуль прибора и повторить 4) 5;
 - 7) подключить к тесламетру-веберметру измерительный зонд «М»;
- 8) поместить измерительные зонды поверяемого тесламетра-веберметра и тесламетра Ш1-9 в рабочий объем электромагнита однородного магнитного поля;
- 9) последовательно устанавливая значения магнитной индукции B_0 по показаниям эталонного тесламетра III1-9 в соответствии с таблицей 4а, производить отсчет показаний B_+ и B_- тесламетра-веберметра ТПУ-2В при обоих направлениях магнитного поля,

действующего на измерительный зонд; для обоих показаний (B_+ и B_-) вычислять относительную погрешность δ_0 в процентах по формуле (1), где за значения $B_{\tt u}$ принимать B_+ и B_- ;

- 10) подключить к тесламетру-веберметру измерительный зонд «С»;
- 11) поместить измерительные зонды поверяемого тесламетра-веберметра и тесламетра Ш1-9 в рабочий объем экранированной катушки однородного стабильного магнитного поля;
- 12) последовательно устанавливая значения магнитной индукции B_0 по показаниям эталонного тесламетра Ш1-9 в соответствии с таблицей 46, производить отсчет показаний B_+ и B_- тесламетра-веберметра ТПУ-2В при обоих направлениях магнитного поля, действующего на измерительный зонд; для обоих показаний (B_+ и B_-) вычислять относительную погрешность δ_0 в процентах по формуле (1), где за значения B_{μ} принимать B_+ и B_- ;
 - 13) результаты измерений и вычислений заносить в таблицы 3, 4а, 4б;
- 14) сравнивать значения δ_0 , полученные при выполнении операций 1) 12), со значениями δ_0 , вычисляемыми для данного значения магнитной индукции по формуле (1). Результаты поверки считают положительными, если:
- диапазон и пределы измерений магнитной индукции постоянного поля соответствуют 1.2.1.2 ТПКЛ.411171.010РЭ;
- относительная погрешность измерений δ_0 не превышает значений, которые определяются по формулам (1.1a), (1.1б), (1.1в) в ТПКЛ.411171.010РЭ.

Таблица 3 – Измерения магнитной индукции постоянного поля в мере КПВК

Предел	Рекомендуемое	Установленное	Показани	ие тесламе	тра, мТл	Относительная
измерений,	значение	в мере значение	B ₊	B_	Ви	погрешность
мТл	индукции, мТл	B_0 , м T л	D+	D_	Би	δ_0 , %
1	0,1					
	0,9					
10	1,0					
	9,9					
100	10					
	20					

Таблица 4а – Измерения магнитной индукции постоянного поля в электромагните

Предел	Рекомендуемое	Показание		тесламетра,		тельная
измерений	значение	Ш1-9	M.	Гл	погрешно	ость δ_0 , %
	индукции, мТл	В ₀ , мТл	\mathbf{B}_{+}	B_	B+	$\mathrm{B}_{\!-}$
100 мТл	20					
	90					
1000 мТл	90					
	500					
	900					
10 Тл	500					·
	900					
	1300					
	1900					

Таблица 46 – Измерения магнитной индукции постоянного поля в экранированной катушке

Предел	Рекомендуемое	Показание	Показание	тесламетра,	Относи	тельная
измерений	значение	Ш1-9	M ['] .	Гл	погрешность δ_0 , %	
	индукции, мТл	В ₀ , мТл	B ₊	B_	B ₊	B _
100 мТл	20					
	90					
1000 мТл	100					
	200					
	300					
	400					
10 Тл	100					
	200					
	300					
	400					

- 5.4 Для определения основной относительной погрешности измерений магнитной индукции переменного и импульсного магнитного поля и дополнительной частотной относительной погрешности измерений магнитной индукции переменного поля выполнить следующие операции:
 - 1) подключить к тесламетру-веберметру измерительный зонд «М»;
 - 2) установить тесламетр-веберметр в режим измерения переменного магнитного поля;
- 3) поместить измерительный зонд в рабочий объем меры КПВК так, чтобы центр измерительного преобразователя совпал с центром рабочего объема меры;
- 4) последовательно устанавливать в мере КПВК частоту и максимальные значения магнитной индукции B_0 по таблице 5 и измерять поверяемым прибором максимальные значения магнитной индукции B_n ;
- 5) для каждого значения магнитной индукции вычислять основную относительную погрешность δ_0 , %, по формуле (1);
- 6) подключить к тесламетру-веберметру измерительный зонд «С» и выполнить операции 3) 5;
- 7) подключить к тесламетру-веберметру измерительный зонд «И» и выполнить операции 3) 5);
 - 8) результаты измерений и вычислений заносить в таблицу 5;
- 9) сравнить полученные значения δ_0 со значениями δ_0 , вычисляемыми для данной магнитной индукции по формуле (1.2) в ТПКЛ.411171.010РЭ для нормальной области частот до 2000 Гц; для рабочей области частот убедиться также в том, что дополнительная погрешность не превышает вычисленной по формуле (1.3) в ТПКЛ.411171.010РЭ.

Таблица 5 – Измерения магнитной индукции переменного поля в мере КПВК

Предел	Рекомендуемая	Установленное в	Показание	Относительная
измерений,	индукция, мТл	мере	тесламетра	погрешность
мТл	(максимальное	максимальное	Ви, мТл	δ_0 , %
	значение)	значение		
		Во, мТл		
	**	Частота 9 Гц		
1	0,1			
	0,9			
10	0,9			
	9,0			
100	9,0			
	20			

1000	9,0						
	20						
	Частота 58 Гц						
1	0,1						
	0,9			_			
10	0,9						
	9,0						
100	9,0						
	20						
1000	9,0						
	20						
	T	Частота 1030 Г	Ц				
1	0,1 0,9						
	0,9						
10	0,9						
	9,0						
100	9,0						
	20						
1000	9,0						
	20		.,,,				
		Частота 2640 Г	Ц				
1	0,1						
	0,9						
10	0,9						
	9,0						
100	9,0						
	20						
1000	9,0						
	20						
		Частота 4410 Г	ц				
1	0,1 0,9						
	0,9						
10	0,9 9,0						
	9,0						
100	9,0						
	20						
1000	9,0						
	20						

Результаты поверки считают положительными, если:

- основная относительная погрешность измерений магнитной индукции не превышает значений, которые определяются по формуле (1.2) в ТПКЛ.411171.010РЭ;
 - нормальная область частот магнитной индукции составляет от 5 до 2000 Гц;
 - рабочая область частот магнитной индукции составляет от 2 до 5 кГц;
- дополнительная относительная погрешность измерений в рабочей области частот не превышает значений, которые определяются по формуле (1.3) в ТПКЛ.411171.010РЭ.
- 5.5 Поверка тесламетра-веберметра в режиме «Веберметр», как видно из описания процесса интегрирования прибором (1.4.6 в ТПКЛ.411171.010РЭ), может быть сведена к определению погрешностей измерений двух параметров: частоты тактового генератора, которая определяет в т.ч. время интегрирования, и интеграла напряжения постоянного тока (в вольт-

секундах) за установленное время при подаче на вход поверяемого тесламетра-веберметра нормированных значений напряжения. Измерения проводят во всем диапазоне на различных пределах измерений. Для выполнения этих операций следует подключить к тесламетру-веберметру блок усилителя.

- 5.5.1 Для определения погрешности установки частоты тактового генератора выполнить следующие операции:
 - 1) установить в тесламетре-веберметре следующие настройки:
 - режим работы «Тесламетр»;
 - измерительный зонд «И»;
 - режим измерения переменного магнитного поля;
 - частотный диапазон 70 кГц;
 - предел измерений 100 Тл;
 - количество измерений 5;
- 2) подключить к блоку усилителя генератор-калибратор гармонических сигналов СК6-122 и через тройник частотомер Ч3-54;
- 3) включить генератор-калибратор и установить: частоту 50 кГц; коэффициент гармоник 0,001 % (практически чистый гармонический сигнал); выходное напряжение 0,5 В;
- 4) после завершения 5 измерений в тесламетре-веберметре произвести отсчет результата измерений частоты поверяемым прибором и сравнить его с показанием частотомера. Результаты измерений занести в протокол.

Результаты поверки считают положительными, если относительная погрешность установки частоты тактового генератора поверяемого прибора не превышает 0,01 %, т.е. является пренебрежимо малой.

- 5.5.2 Для определения погрешности измерения за заданное время интеграла напряжения (вольт-секунд) при подаче на вход тесламетра-веберметра нормированных значений постоянного напряжения выполнить следующие операции:
 - 1) установить в тесламетре-веберметре следующие настройки:
 - режим работы «Веберметр»;
 - «Изм. катушка 1»;
 - способ запуска измерений «Пошаговый»;
 - количество измерений 5;
- 2) подключить к входу блока усилителя калибратор многофункциональный 5522А в режиме воспроизведения постоянного напряжения;
 - 3) включить калибратор 5522А и дать ему прогреться;
- 4) выставляя на поверяемом приборе требуемое время интегрирования, устанавливать на калибраторе последовательно значения напряжения (значения потокосцепления, которые подлежат измерению поверяемым прибором), по таблице 6. Далее выполнять операции 3.4.4 ТПКЛ.411171.010РЭ в режиме «Пошаговый» (см. 3.4.3.2 в ТПКЛ.411171.010РЭ). Следует при этом следить, чтобы при выполнении операции «Оценка шума» на выходе калибратора было установлено напряжение, равное нулю.

Таблица 6 – Измерения потокосцепления

	Установленные значения			Показание	
Предел измерений	Напряжение	Время интегрирова ния	Потокосцепл ение Ψ_0	прибора Ψ _и	Погрешность $\delta, \%$
	*1 мкВ	1 c	1 мкВ⋅с		
100 D	10 мкВ	1 c	10 мкВ⋅с		
100 мкВ∙с	*50 мкВ	*1 c	50 мкB·c		
	100 мкВ	1 c	100 мкВ⋅с		
1 мВ⋅с	10 мкВ	10 с	100 мкВ⋅с		

	*50 мкВ	*10 c	500 мкB·c	
	100 мкВ	10 c	1 мВ⋅с	
	1 мВ	1 c	1 мВ⋅с	
10 мВ⋅с	*5 мВ	*1 c	5 мB·с	
	5 мВ	2 c	10 мВ⋅с	
	10 мВ	1 c	10 мВ⋅с	
100 мВ⋅с	*50 мВ	*1 c	50 мB·c	
	50 мВ	2 c	100 мВ⋅с	
	100 мВ	1 c	100 мВ⋅с	
1 B⋅c	*500 мВ	*1 c	500 мВ⋅с	
	500 мВ	2 c	1 B⋅c	
	1 B	1 c	1 B·c	
10 B⋅c	*500 мВ	*10 c	5 B⋅c	
	500 мВ	20 с	10 B⋅c	

Примечание к таблице 6 — Проверку погрешностей тесламетра-веберметра в точках таблицы 6, помеченных знаком (*), допускается проводить только при первичных поверках тесламетра-веберметра при выпуске их из производства.

5) для каждого установленного значения потокосцепления вычислять относительную погрешность δ , %, по формуле (3):

$$\delta = [(\Psi_{\text{H}} - \Psi_0)/\Psi_0] \cdot 100, \tag{3}$$

где Ψ_0 — установленное значение потокосцепления, Ψ_{u} - измеренное значение потокосцепления;

- 6) результаты измерений и вычислений заносить в таблицу 6;
- 7) сравнить полученные значения δ со значениями δ , вычисляемыми для данного значения потокосцепления по формуле (1.4) в ТПКЛ.411171.010РЭ.

Результаты поверки считают положительными, если относительная погрешность измерений потокосцепления не превышает значений, которые определяются по формуле (1.4) в ТПКЛ.411171.010РЭ.

6 Оформление результатов поверки

- 6.1 Положительные результаты поверки ТПУ-2В оформляют в соответствии с действующими нормативными документами.
- 6.2 При отрицательных результатах поверки выдается извещение о непригодности ТПУ-2В, и применение его не допускается.
- 6.3 По результатам поверки делается соответствующая запись в разделе 7 формуляра ЦЕКВ.411171.010ФО.