СОГЛАСОВАНО

Генеральный директор ООО «ВНИИ «Спектр»

> А.М. Зайцев ерее 2015 г.

УТВЕРЖДАЮ

Руководитель ГЦИ СИ ФГУП «РФЯИ ВНИИТФ

им. академ Е.М. Забабахина»

ве Есв Парокин

11 на года 2015 г.

СПЕКТРОМЕТР ПОРТАТИВНЫЙ СКГ-1005 «МикроСпектр»

Методика поверки

КЕБР.412131.005 МП

v.p. 63414-16

СОДЕРЖАНИЕ

Взат. инв. № Инв. № дубл. Падп. и дата

1 Общие требования	3
2 Операции и средства поверки	4
3 Требования к квалификации поверителей	6
4 Требования безопасности	6
5 Условия поверки и подготовка к ней	6
6 Проведение поверки и обработка результатов измерений	7
7 Оформление результатов поверки	13
Приложение А (рекомендуемое), Форма протокола поверки	14

Изм. Лист № докум. П а дал. Дата	КЕБР.412131	.005 МП
Разраб. Пономерания В 11. 11. 245 Пров. Губчик Имера	СПЕКТРОМЕТР ПОРТАТИВНЫЙ	<u>Лит.</u> <u>Лист</u> <u>Листов</u> 2 15
HKOHMP. Kooda Da 11.11 9015	СКГ-1005 «МикроСпектр» Методика поверки	

1.1 Настоящая методика поверки устанавливает порядок первичной и периодической поверки спектрометра портативного СКГ-1005 «МикроСпектр» (далее спектрометр).

Методика разработана в соответствии с РМГ 51-2002 «Документы на методики поверки средств измерений. Основные положения».

- 1.2 Поверку спектрометра проводят органы государственной метрологической службы либо юридические лица, аккредитованные в установленном порядке на право поверки указанных средств измерений.
- 1.3 Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются настоящей методикой поверки.
- 1.4 Поверке подлежат все вновь выпускаемые, выходящие из ремонта и находящиеся в эксплуатации спектрометры.
- 1.5 Первичная поверка проводится при выпуске вновь произведенных спектрометров, а также после ремонта.
 - 1.6 Периодическая поверка производится в процессе эксплуатации спектрометра.
- 1.7 Перед вводом в эксплуатацию расконсервированных спектрометров со сроком хранения, превышающим межповерочный интервал, проводится внеочередная поверка. Внеочередная поверка проводится в объеме периодической поверки.
 - 1.8 Межповерочный интервал составляет один год.

Инв. № подл. Подп. и дата Взам инв. № Инв. № дубл.

Изм Лист № доким Подо Пота

КЕБР.412131.005 МП

2.1 При первичной и периодической поверке спектрометров должны выполняться операции, указанные в таблице 1.

Таблица 1

Hermoneyee	Номер пункта	Проведение	операции при
Наименование	методики	первичной	периодической
операции	поверки	поверке	поверке
Внешний осмотр	6.1	Да	Да
Опробование, идентификация программного обеспечения	6.2	Да	Да
Определение диапазона энергий регистрируемых гамма-квантов и интегральной нелинейности характеристики преобразования	6.3	Да	Нет
Определение энергетического разрешения для линий с энергией 121,8 кэВ и 1332,5 кэВ	6.4	Да	Да
Определение максимальной входной статистической загрузки от источника Со-60	6.5	Да	Нет
Определение относительной эффективности регистрации в пике полного поглощения 1332,5 кэВ (Со-60) в геометрии точечного источника на расстоянии источник-детектор 250 мм по отношению к детектору (NaI)Tl	6.6	Да	Нет
Определение относительной погрешности измерений активности $(10^3 - 10^5)$ Бк от точечного источника	6.7	Да	Да
Определение диапазона измерения мощности амбиентного эквивалента дозы (МАЭД) фотонного излучения и относительной погрешности измерений МАЭД	6.8	Да	Да

- 2.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и спектрометр бракуется.
 - 2.3 При проведении поверки применяются средства поверки, приведенные в таблице 2.
- 2.4 Все средства поверки должны быть исправны, поверены согласно требованиям методик поверок и иметь действующие свидетельства о поверке.

Таблица 2)
-----------	---

Номер пункта	Наименование и тип основного	Основные метрологические
методики поверки	средства поверки	характеристики
5.1	Гигрометр электронный типа Center 313	Диапазон измерений температуры: от минус 20 до 60^{0} С. Диапазон измерений относительной влажности: от 10 до 100 %. Пределы допускаемой абсолютной погрешности измерений температуры: $\pm 0.7^{0}$ С. Пределы допускаемой абсолютной погрешности измерений влажности: $\pm 2.5 $ %.

5.1	ицы 3 Барометр типа БАММ-1	Цена деления 0,1 кПа. Диапазон измерений атмосферного давления от 80 до 106 кПа. Пределы погрешности не более ±0,2 кПа.
	Дозиметр типа ДБГ-06Т	Измеряемая мощность дозы от 0,1 мкЗв/ч. Пределы допускаемой относительной погрешности не более ±20 %.
6.3	Комплект точечных источников фотонного излучения закрытых спектрометрических эталонных ОСГИ-3 на основе радионуклидов: Am-241, Co-60, Eu-152, Cs-137, Y-88	Активность от 10 ³ до 10 ⁵ Бк, погрешность не более 5 % (Р=0,95)
6.4	Комплект точечных источников фотонного излучения закрытых спектрометрических эталонных ОСГИ-3 на основе радионуклидов Со-60, Eu-152	Активность от 10 ³ до 10 ⁵ Бк, погрешность не более 5 % (P=0,95)
6.5	Установка облучательная ВУ-01 «Эталон-2М» с источником Со-60	Статистическая загрузка от 10 до 2·10 ⁶ имп/с.
	Дозиметр ДКС-АТ5350/1 – эталон 1 разряда	Погрешность не более 2,5 % (P=0,95)
6.6	Источник фотонного излучения закрытый спектрометрический эталонный ОСГИ-3 на основе радионуклида Со-60	Активность от 10 ³ до 10 ⁵ Бк, погрешность не более 4 % (Р=0,95)
6.7	Комплект точечных источников фотонного излучения закрытых спектрометрических эталонных ИМН-Г-1 (ОСГИ-Р) на основе радионуклидов: Cs-137, Co-60, Eu-152.	Активность от 10 ³ до 10 ⁵ Бк, погрешность не более 4 % (Р=0,95)
6.8	Установка облучательная ВУ-01 «Эталон-2М» с источником Со-60 Дозиметр ДКС-АТ5350/1 – эталон 1	Статистическая загрузка от 10 до 2·10 ⁶ имп/с. Погрешность не более 2,5 %
	разряда	(P=0,95) не приведенных в перечне, но обес-

Инв. № подл.

Лист

КЕБР.412131.005 МП

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- допускаются специалисты, прошедшие 3.1 К проведению поверки спектрометра обучение и аттестованные в установленном порядке в качестве поверителей с правом поверки СИ ионизирующих излучений.
- 3.2 Поверители должны иметь допуск к работе с источниками излучения в соответствии с СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)»

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При поверке должны соблюдаться требования:
- СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)»;
 - СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»;
- РД 153-34.0-03.150-00 «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок (ПОТ Р M-016-2001)».
 - инструкций по технике безопасности, действующие на предприятии.
 - 4.2 Процесс поверки должен быть отнесен к работе в особо вредных условиях трудах.

При поверке должны выполняться требования безопасности, изложенные в руководстве по эксплуатации (далее РЭ) и в документации на применяемые средства поверки и оборудование.

5 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 5.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающей среды (20±5) °C,
- атмосферное давлениеот 86,0 до 106,7 кПа,
- мощность амбиентного эквивалента дозы гамма-излучения

(фон вне спектрометра)не более 0,20 мкЗв/ч.

Питание спектрометра исполнения Базовое должно осуществляться:

- -от источника постоянного тока (встроенных литиево-ионных батарей) напряжением 12,6 Ви 25,2 В,
- от сети переменного тока (с адаптером 12,6 В) напряжением питающей сети (220±22) В и частотой питающей сети (50±1) Гц.

Питание спектрометра исполнения 01, 02 должно осуществляться:

- -от источника постоянного тока (встроенных литиево-ионных батарей) напряжением 12,6 Β,
- от сети переменного тока (с адаптером 12,6 B) напряжением питающей сети (220±22) В и частотой питающей сети (50±1) Гц только для зарядки аккумуляторов.

Питание спектрометра исполнения 03 должно осуществляться:

-от источника постоянного тока (встроенных литиево-ионных батарей) напряжением 14,4 Β,

- от сети переменного тока (с адаптером (12-17) В) напряжением питающей сети (220±22) В и частотой питающей сети (50 ± 1) Гц.
 - 5.2 Вибрация, тряска, удары, влияющие на работу спектрометра, должны отсутствовать.

Уровень внешнего фонового излучения должен быть измерен и указан в протоколе поверки.

- 5.3 Поверка спектрометра должна выполняться в чистом помещении, не содержащем источников, сходных по составу излучения с предполагаемым излучением радионуклидов, имеющихся в эталонных источниках.
- работе 5.4 Средства должны быть подготовлены к согласно измерений эксплуатационной документации на них.

Перед проведением поверки необходимо выдержать спектрометр не менее 8 ч в климатических условиях, указанных в 5.1.

5.5 Подготовку спектрометра к поверке следует проводить согласно указаниям РЭ. Включать спектрометр после охлаждения детектора. Время охлаждения детектора до рабочего состояния после включения охладителя дл исполнений Базовое и 03 – 12 часов; после заправки жидким азотом для исполнений 01,02 - 1.5 часа.

Выдержать спектрометр в рабочем состоянии в течение 30 минут.

- 5.6 Поверку спектрометра следует проводить с использованием ПО SpectraLineGP (далее ПО спектрометра).
- 5.7 Для размещения источников у детектора следует использовать дистансерные устройства произвольной формы.

6 ПРОВЕДЕНИЕ ПОВЕРКИ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 6.1 Внешний осмотр
- 6.1.1. При внешнем осмотре должно быть установлено:
- соответствие комплектности спектрометра, указанной в паспорте КЕБР.412131.005ПС;
- наличие эксплуатационной документации;
- отсутствие дефектов, влияющих на работу спектрометра;
- наличие клейм, свидетельств о предыдущей поверке.
- 6.1.2 Результаты внешнего осмотра считать положительными, если:
- спектрометр поступил в поверку в комплекте в соответствии с паспортом;
- отсутствуют дефекты, влияющие на работу спектрометра,
- имеются клейма, свидетельства о предыдущей поверке.
- 6.2 Опробование, идентификация программного обеспечения

Опробование спектрометра провести после истечения времени установления рабочего режима в следующем порядке:

- 1) В дистансерном устройстве спектрометра закрепить источник Со-60 из комплекта ИМН-Г-1 и закрыть крышку контейнера свинцовой защиты.
- 2) В ПО спектрометра загрузить конфигурацию спектрометра, соответствующую типу детектора и цифрового спектрометрического устройства (далее СУ), геометрии измерений; при первичной поверке необходимо провести настройку ПО согласно руководству пользователя «Комплекс программного обеспечения SpectraLineGP» (далее РП ПО).

- 3) Нажать кнопку «Пуск» для набора спектра.
- 4) Убедиться в том, что сигналы от детектора проходят через усилительный тракт спектрометра и регистрируются СУ, спектрометр производит набор спектра. Форма пика амплитудного распределения должна описываться плавной огибающей кривой и иметь форму, близкую к симметричной.
 - 5) Провести идентификацию ПО спектрометра.

При идентификации ПО проверить соответствие:

- идентификационных наименований ПО, указанного в технической документации и выводимого в окне интерфейса пользователя;
- номера версии (идентификационного номера) ПО, указанного в технической документации и выводимого в окне интерфейса пользователя;
- контрольной суммы ПО, указанной в технической документации и выводимой на экран монитора при проверке, для чего войти в основное меню ПО, открыть закладку «Справка/О программе» и проверить полученную информацию.
- 6.3 Определение диапазона энергий регистрируемых гамма-квантов и интегральной нелинейности (ИНЛ) характеристики преобразования

Операции провести в следующем порядке:

- 1) Поочередно устанавливая эталонные источники с радионуклидами Am-241, Cs-147, Co-60, Eu-152, Y-88 из комплекта ОСГИ-3 в дистансерное устройство, зарегистрировать аппаратурные спектры источников с использованием программного обеспечения (ПО) спектрометра.
- 2) Для определения ИНЛ необходимо обеспечить регистрацию не менее семи пиков полного поглощения (таблица 3) по всем указанным источникам таким образом, чтобы количество отсчетов в канале, соответствующем максимуму зарегистрированных пиков, было не менее 2000 импульсов.

Таблица 4 – Значения энергий пиков полного поглощения источников для определения ИНЛ

			•			
Радионуклид	Энергия пика Еі, кэВ					
²⁴¹ Am				59,6		
¹⁵² Eu	121,8	344,3	778,9	964,1	1112,1	1408
¹³⁷ Cs				661,6		
⁶⁰ Co	1173,2 1332 2734				1332	2,5
88Y						

- 3) Определить программно центроиды всех зарегистрированных пиков полного поглошения.
 - 4) Аппроксимировать характеристику преобразования прямой линией $n=a+b\cdot E$.
- 5) Определить коэффициенты характеристики преобразования a и b методом наименьших квадратов по формулам:

$$a = \left[\sum_{i} n_{i} \cdot \sum_{i} E_{i}^{2} - \sum_{i} E_{i} \cdot \sum_{i} (n_{i} \cdot E_{i})\right] / \left[m \cdot \sum_{i} E_{i}^{2} - (\sum_{i} E_{i})^{2}\right]$$
(1)

$$b = (\mathbf{m} \cdot \sum (\mathbf{n}_i \cdot \mathbf{E}_i) - \sum \mathbf{E}_i \cdot \sum \mathbf{n}_i) / [\mathbf{m} \cdot \sum \mathbf{E}_i^2 - (\sum \mathbf{E}_i)^2], \qquad (2)$$

где Е_і- значение энергии зарегистрированных пиков полного поглощения, кэВ;

- n_{i} номера канала, в котором расположена центроида пика полного поглощения нуклидов, соответствующего энергии E_{i} ;
 - т количество обрабатываемых пиков полного поглощения.

6) Для каждой центроиды n_i пика, соответствующего энергии E_i , рассчитать отклонение от прямой линии (ΔE_i ,) в кэB, описывающей характеристику преобразования, по формуле:

$$\Delta E_i = E_i - (n_i - a) / b. \tag{3}$$

7) Выбрать максимальное отклонение ($\Delta E_{i,max}$) и рассчитать интегральную нелинейность преобразования (ИНЛ) в процентах по формуле:

$$\mathbf{VHJI} = (\Delta \mathbf{E}_{i,\text{max}} / \mathbf{E}_{\text{max}}) \cdot 100 \%, \tag{4}$$

где E_{max} – верхнее значение энергии из измеряемого диапазона энергий, кэB,

$$E_{\text{Max}} = \frac{n_C - a}{h} \tag{5}$$

где: n_c- номер последнего канала.

Определение ИНЛ одновременно является проверкой диапазона регистрируемых энергий. Верхнюю границу диапазона регистрируемых энергий определить по формуле 5. Нижнюю границу определяем по нижнему значению полезного сигнала зарегистрированного гамма-спектра Am-241.

Результаты поверки считают удовлетворительными для поверяемого диапазона энергий, если значение ИНЛ в % не превышает значения, указанного в 1.2 РЭ:

Диапазон регистрируемых энергий от 10 до 3000 кэВ. Пределы допускаемой относительной погрешности характеристики преобразования (ИНЛ) для спектрометров исполнений: базовое, 01,02 - не более $\pm 0,05\%$, для исполнения 03 - не более $\pm 0,025\%$.

- 6.4 Определение энергетического разрешения для линий с энергией 121,8 кэВ и 1332,5 кэВ
- 1) Провести регистрацию гамма-спектра источника с радионуклидом Со-60 из комплекта ОСГИ-3 использованием ПО спектрометра. Расстояние источник-детектор выбрать таким, чтобы в максимуме пика гамма линии было не менее 2000 импульсов. При этом входная статистическая загрузка не должна превышать значения 10³ имп/с

Сохранить зарегистрированный аппаратурный спектр Со-60.

- 2) Повторить процедуру для регистрации спектра Eu-152, контролируя количество отсчетов в пике 121,8 кэВ. Сохранить аппаратурный спектр Eu-152.
- 4) С помощью информации в статусной (подстрочной) строке файла полученного спектра в ПО спектрометра определить абсолютное энергетическое разрешение [полная ширина на полувысоте (ПШПВ)], в кэВ, для линии с энергией 1332,5 кэВ (Со-60) и для линии с энергией 121,8 кэВ (Еu-152).

Полученные значения абсолютных энергетических разрешений не должны превышать значений, указанных в 1.2 РЭ (таблица 4):

Таблица 5

исполнен	ие базовое	исполн	ение 01	исполн	ение 02	исполн	ение 03
для линии для линии		для линии	для линии	для линии	для линии	для линии	для линии
121,8 кэВ	1332,5 кэВ	121,8 кэВ	1332,5 кэВ	121,8 кэВ	1332,5 кэВ	121,8 кэВ	1332,5 кэВ
Eu-152), ₉ B	(Со-60), эВ	Eu-152), ₉ B	(Со-60), эВ	Eu-152), эВ	(Со-60), эВ	Eu-152), эВ	(Со-60), эВ
не более	не более	не более	не более	не более	не более	не более	не более
1000	2000	1000	2000	1000	2000	1000	2000

6.5 Определение максимальной входной статистической загрузки от источника Со-60 Операции провести в следующем порядке:

- 1) Установить спектрометр на установку ВУ-01 в точку с активностью не более $1\cdot10^3$ Бк. При этом значение входной статистической загрузки не должна превышать значения 10^3 имп/с и значение постоянной времени формирования должно быть $\tau = 2$ мкс.
- 2) Зарегистрировать аппаратурный спектр Со-60. Число отсчетов, зарегистрированных в пике полного поглощения, должно быть не менее 2000 для линии с энергией 1332,5 кэВ.
- 3) Определить абсолютное энергетическое разрешение η_1 в соответствии с п.6.4 и зафиксировать номер канала, соответствующий положению максимума пика полного поглощения центроиды n_1 для линии с энергией 1332,5 кэВ.
- 4) Увеличить входную статистическую загрузку до $1\cdot10^5$ имп/с путем уменьшения расстояния до источника. При этом загрузка спектрометра не должна превышать указанного значения.
- 5) Зарегистрировать аппаратурный спектр Со-60 при максимальной загрузке. Число отсчетов, зарегистрированных в пике полного поглощения, должно быть не менее 2000 для энергии 1332,5 кэВ.
 - 6) Определить абсолютное энергетическое разрешение η_2 в соответствии с п.6.4.
- 7) Определить изменение положения центроиды пика и энергетического разрешения по линии с энергией 1332,5 кэВ в зависимости от входной загрузки.

Рассчитать относительное значение изменения энергетического разрешения, в %, по формуле:

$$\delta_{\eta} = \frac{\eta_{\text{Max}} - \eta_{\text{Mull}}}{\eta_{\text{Mull}}} \cdot 100, \tag{6}$$

где: $\eta_{_{\mathit{MUH}}}$ и $\eta_{_{\mathit{Max}}}$ - значения энергетического разрешения при малой и максимальной загрузке, соответственно.

Рассчитать относительное смещение положения центроиды пика, в %, по формуле:

$$\delta_n = \frac{n_{\text{\tiny MAX}} - n_{\text{\tiny MUH}}}{E_{Co-60}} \cdot K \cdot 100, \tag{7}$$

где: $n_{_{\!\mathit{MMI}}}$ и $n_{_{\!\mathit{MAX}}}$ - номер канала, соответствующий положению центроиды пиков при малой и максимальной загрузке, соответственно,

$$K$$
 — энергетическая ширина канала, кэВ, $K = \frac{E_{\text{мах}}}{n_c}$,

 $E_{\text{мах}} = 3000 \text{ кэВ} -$ значение энергии в последнем канале, кэВ;

 n_c — число каналов измерений;

 E_{Co-60} =1332,5 кэВ — энергия моноэнергетической линии Co-60.

Результаты поверки считают удовлетворительными, если максимальная входная статистическая загрузка от источника Co-60 равна 100000 имп/сс. В указанном диапазоне загрузок спектрометрического тракта значение энергетического разрешения для линии 1332,5 кэВ соответствует значениям таблицы 4 методики поверки. Значение δ_{η} , %, не превышает 50 %, δ_{n} не превышает 0,5 %.

Допускается использовать метод измерения максимальной входной статистической загрузки в соответствии с ГОСТ 26874-86 «Спектрометры энергий ионизирующих излучений. Методы измерения основных параметров» с использованием генератора импульсов.

6.6 Определение относительной эффективности регистрации в пике полного поглощения 1332,5 кэВ (Со-60) в геометрии точечного источника на расстоянии источникдетектор 250 мм по отношению к детектору (NaI)Tl

Для испытаний используют радионуклидный источник Co-60 из комплекта ОСГИ и дистансерное устройство, позволяющее устанавливать источник на расстоянии 250 мм от детектора по его оси.

- 1) Зарегистрировать аппаратурный спектр Co-60. Число отсчетов, зарегистрированных в пике полного поглощения, должно быть не менее 2000 для линии с энергией 1332,5 кэВ. Входная загрузка не более 500 имп/с.
 - 2) С помощью ПО спектрометра определить значение эффективности регистрации.
- 3) Повторить процедуры измерений эффективности регистрации 2 раза и определить среднее значение эффективности регистрации для данного источника.
- 4) Рассчитать значение относительной эффективности регистрации для линии с энергией 1332,5 кэВ по отношению к детектору (NaI)Tl с площадью чувствительного элемента (7,65×7,65) см, в %, по формуле:

$$\varepsilon_{omh} = \frac{\varepsilon}{\varepsilon_{Nal}} \cdot 100, \tag{8}$$

где $\varepsilon_{Nal} = 0,0012$ имп/с/Бк - значение эффективности регистрации сцинтилляционного детектора (NaI)Tl с площадью чувствительного элемента (7,65×7,65) см в пике 1332,5 кэВ;

 ε - среднее значение абсолютной эффективности регистрации в пике 1332,5 кэВ для данной геометрии, измеренное на спектрометре

$$\frac{1}{\varepsilon} = \frac{\sum_{i=1}^{n} \varepsilon_i}{n},\tag{9}$$

n = 3 - число измерений.

Результаты поверки считают удовлетворительными, если $\epsilon_{\text{отн}}$ в % равно значению, установленному в 1.2 РЭ:

исполнение базовое	исполнение 01	исполнение 02	исполнение 03
(850) %	(850) %	(850) %	(815) %

6.7 Определение допускаемой относительной погрешности измерений активности (10^3-10^5) Бк от точечного источника

Для испытаний использовать источники ИМН-Г-1 (ОСГИ-Р) с радионуклидами: Сs-137, Eu-152, Co-60 с активностью от 10^3 до 10^5 Бк.

Операции провести в следующем порядке:

- 1) Поочередно устанавливая источники с радионуклидами Cs-147, Co-60, Eu-152 в дистансерное устройство на расстоянии 10 см от крышки детектора и соосно детектору, зарегистрировать аппаратурные спектры источников с использованием программного обеспечения (ПО) спектрометра. «Живое время» измерений 3600 с.
 - 2) Рассчитать активность источника посредством ПО.
- 3) Определить пределы допускаемой относительной погрешности измерений активности (δA) , %, по формуле:

$$\delta A = \pm \sqrt{\delta_A^2 + \delta_{A0}^2} \,, \tag{10}$$

где δ_{A0} = 4 %— относительная погрешность, нормированная в паспорте на источник ОСГИ-Р:

 $\delta_{A,}$ мах - максимальное значение относительной погрешности измерений активности. Относительную погрешность измерений активности, в %, определить по формуле:

$$\delta_{\mathsf{A}} = \frac{A_i - A_n}{A_n} \cdot 100 \,, \, \% \tag{11}$$

где: A_i – значение результата измерений активности источника, Бк; A_n – значение активности, указанное в паспорте на источник, Бк.

Результаты поверки считают удовлетворительными, если относительная погрешность измерений активности не превышает значения, указанного в 1.2 РЭ для исполнений:

исполнение базовое		исполнение 01	исполнение 02	исполнение 03
	не более ±15 %	не более ±20 %	не более ±20 %	не более ±20 %

6.8 Определение диапазона измерений МАЭД фотонного излучения и относительной погрешности измерений МАЭД

Диапазон измерений МАЭД и относительную погрешность МАЭД поверяемого спектрометра определяют методом прямых измерений на установке облучательной ВУ-01 «Эталон -2М» с источником Со-60 (далее установка).

Спектрометр располагают на линейке установки таким образом, чтобы детектор спектрометра был обращен на источник излучения, при этом нормаль, проведенная из геометрического центра оси детектора должна совпадать с центральной осью коллиматора установки.

МАЭД и оценку погрешности измерений МАЭД выполняют в поддиапазонах: (0,1...1,0) мкЗв/ч; (1,0...50,0) мкЗв/ч; (50,0...250,0) мкЗв/ч; (250,0...1000) мкЗв/ч.

- 1) Установить спектрометр на линейке установки в положение, обеспечивающее воспроизведение МАЭД в одном из указанных поддиапазонов, зафиксировать воспроизводимое значение МАЭД.
- 2) Облучить испытуемый спектрометр гамма-излучением источника Со-60 в течение не менее 10 минут.
- 3) В процессе облучения считывать показания пяти измерений спектрометра (с помощью камеры или иного дистанционного устройства) с интервалом 30 секунд.
 - 4) повторить операции 1)-3) для остальных поддиапазонов измерений МАЭД;
- 5) определить пределы допускаемой относительной погрешности измерений МАЭД для каждого диапазона (δ), %, по формуле:

$$\delta = \pm \sqrt{\delta_H^2 + {\delta_0}^2} \,, \tag{12}$$

где: $\delta_{\rm 0}$ = 2,5 %— относительная погрешность дозиметра ДКС AT5330/1;

 $\delta_{\scriptscriptstyle H}\,$ - относительная погрешность измерений МАЭД, в %,:

$$\delta_H = \frac{H_{cp} - H_0}{H_0} \cdot 100, \tag{13}$$

где: H_0 — значение МАЭД, воспроизводимое установкой, мкЗв/ч;

 H_{cp} - среднее арифметическое значение результатов измерений МАЭД в поверяемой точке (H_i) для n=6, мкЗв/ч,

$$H_{cp} = \frac{\sum_{i=1}^{n} H_i}{n} \quad . \tag{14}$$

Выполнение оценки погрешности измерений МАЭД одновременно является проверкой диапазона измерений МАЭД.

Результаты поверки считают удовлетворительными, если значения относительной погрешности измерений МАЭД в любом поддиапазоне измерений, определенные по формуле (12), не превышают значения, указанного в 1.2 РЭ: Диапазон измерений мощности амбиентного эквивалента дозы (МАЭД): от 0,1 мкЗв/ч до 1 мЗв/ч. Относительная погрешность измерений МАЭД не превышает: ± 28.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки оформить протоколом по форме приложения А.
- 7.2 Положительные результаты поверки спектрометра оформляются «Свидетельством о поверке и выполняется оттиск поверительного клейма на головки винтов обеих боковых стенок спектрометра.
- 7.3 В обязательном приложении к свидетельству о поверке должны быть указаны следующие технические и метрологические характеристики:
 - тип и номер блока детектирования;
- интегральная нелинейность характеристики преобразования в измеряемом диапазоне энергий гамма-квантов;
 - максимальная входная статистическая загрузка от источника Со-60;
 - относительное энергетическое разрешение для энергии 1332,5 кэВ;
- относительная эффективность регистрации в пике полного поглощения в геометрии точечного источника на расстоянии источник-детектор 250 мм для энергии 1332,5 кэВ;
- пределы допускаемой относительной погрешности измерения активности точечного источника;
- диапазон измерений мощности амбиентного эквивалента дозы (МАЭД) и пределы допускаемой относительной погрешности измерений МАЭД.
- 7.4 При получении отрицательных результатов поверки спектрометр к применению не допускают, оформляют «Извещение о непригодности» и спектрометр направляют в ремонт. При выпуске из ремонта проводят первичную поверку спектрометра.

Приложение А (рекомендуемое) ФОРМА ПРОТОКОЛА ПОВЕРКИ

Спектрометр портативный (СКГ-1005 «МикроСпектр» зав. №
Дата поверки	
Условия проведения поверк	ки
Средства поверки:	
Тип	_ №
Свидетельство о поверке №	до
Источники ОСГИ	
Свидетельство о поверке №	до
1 Внешний осмотр	
3 Проверка метропогически	их характеристик спектрометра:

ļ	1 36	Наименование характеристики	Значе	ние	Вывод о
١	№		Действитель-	Требуемое	соответст-
			ное	согласно РЭ	вии
	3.1	Диапазон энергий регистрируемых гамма -			
4		квантов, кэВ, и интегральная нелинейность			
		характеристики преобразования, %			
	3.2	Энергетическое разрешение для линий с энергией 121,8 кэВ и 1332,5 кэВ, кэВ			
	3.3	Максимальная входная статистическая загрузка от источника Co-60, имп/с			
	3.4	Относительная эффективность регистрации в пике полного поглощения 1332,5 кэВ (Со-60) в геометрии точечного источника на расстоянии источник-детектор 250 мм по отношению к детектору (NaI)Tl, %			
	3.5	Относительная погрешность измерений активности $(10^3 - 10^5)$ Бк от точечного источника, %			
	3.6	Диапазон измерений мощности амбиентного эквивалента дозы (МАЭД) фотонного излучения (мкЗв/ч) и относительная погрешность измерений МАЭД, %			

Vam Aucon No dokum Dada Dama

КЕБР.412131.005 МП

Лист

14

Изм.	Номера листов				Всего	істрации изм	Входящий №		
	U3ME- HEH- HЫX	30ME HEH HЫХ	новых	анну- лиро- ван- ных	листов в докум.	№ докум.	сопроводи– тельного документа и дата	Подпись	Дата
						, <u> </u>			
							1		
									-
				! !					-
						-			
									
						The side of the same of the sa			
	3 1111 21 21								
	:								

	- •								

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата