

Инструкция

Анализаторы сигналов N9038A

Методика поверки

651-16-09 МП

NP-64453-16

г.п. Менделеево 2016 г.

1 Общие сведения

- 1.1 Настоящая методика поверки распространяется на анализаторы сигналов N9038A (далее анализаторы), и устанавливает порядок и объем их первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год.

2 Операции поверки

2.1 При поверке анализаторов выполнить работы в объеме, указанном в таблице 1.

	_			
Tα	бι	ш	บล	

Таблица 1	Номер	Провеление	операций при
Наименование операции	пункта ме-	первичной по-	периодической
паименование операции	тодики	верке	поверке
1 Внешний осмотр	8.1	да	да
2 Опробование	8.2	да	да
3 Идентификация программного обеспечения	8.3		
4 Определение относительной погрешно- сти воспроизведения частоты опорного генератора	8.4	да	да
5 Определение абсолютной погрешности измерений уровня при переключении полос пропускания	8.5	да	да
6 Определение абсолютной погрешности измерений уровня гармонического сигнала	8.6	да	да
7 Определение неравномерности амплитудно-частотной характеристики	8.7	да	да
8 Определение относительного уровня помех, обусловленных гармоническими искажениями	8.8	да	нет
9 Определение фазового шума	8.9	да	нет
10 Определение среднего уровня собственных шумов	8.10	да	да

2.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

3 Средства поверки

3.1 При проведении поверки использовать средства измерений и вспомогательное оборудование, представленные в таблице 2.

- 1	•	n	77	II	t T	2	•
- 1	a	٧).	JE	и	ш	а	_

гаолица 2	
Номер	Наименование и тип (условное обозначение) основного или вспомогательного
пункта ме-	средства поверки: обозначение нормативного документа, регламентирующего
тодики по-	технические требования, и (или) метрологические и основные технические
верки	характеристики средства поверки
8.4	Частотомер электронно-счетный Agilent 53132A (пределы допускаемой отно-
0.4	сительной погрешности измерений частоты ±5·10°°); стандарт частоты руби-
	диевый FS725 (пределы допускаемой относительной погрешности установки
	частоты $\pm 5 \cdot 10^{-10}$)

Номер	Наименование и тип (условное обозначение) основного или вспомогательного
пункта ме-	средства поверки; обозначение нормативного документа, регламентирующего
тодики по-	технические требования, и (или) метрологические и основные технические
верки	характеристики средства поверки
8.6	генератор сигналов Agilent E8257D с опцией UNX (пределы допускаемой от-
0.0	носительной погрешности установки частоты ±2·10°'); измеритель мощности
	№ 1914А с преобразователем измерительным № 482А (Рег.№ 583/5-14); изме-
	ритель мошности N1914A с преобразователем измерительным N848/A
	(Рег № 58375-14): комплект аттенюаторов коаксиальных ступенчатых про-
	граммируемых 8494G, 8496G (Рег. № 41683-09), диапазон ослабления от 0 до
	11 от 0 до 110 дБ. диапазон рабочих частот от 0 до 4 ГГц, относительная по-
1	грешность уровня сигнала 0,03 дБ; аттенюаторы с уровнем ослабления 6 дБ:
8.7	генератор сигналов Agilent E8257D с опцией UNX; генератор сигналов произ-
0.7	родиной формы Agilent 33250A (пределы допускаемой относительной по-
	греничести установки частоты ±1·10 ⁻⁶); измеритель мощности N1914A с пре-
	образователем измерительным N8487A (Рег.№ 58375-14); мультиметр Agilent
	3458A (per.№ 25900-03)
8.8, 8.9	генератор сигналов Agilent E8257D (пределы допускаемой относительной по-
0.0.0.7	грешности установки частоты $\pm 2 \cdot 10^{-7}$); ФНЧ
	Themself Action 1975

- 3.2 Допускается использование других средств измерений, мер волнового сопротивления, аттенюаторов и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.
- 3.3 Применяемые средства поверки должны быть утверждённого типа. исправны и иметь действующие свидетельства о поверке (отметки в формулярах или паспортах).

4 Требования к квалификации поверителей

4.1 К проведению поверки анализаторов допускается инженерно-технический персонал со среднетехническим или высшим образованием, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющие право на поверку (аттестованными в качестве поверителей).

5 Требования безопасности

- 5.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 5.2 К работе с ваттметрами допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, ГОСТ Р 51350-99, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.
- 5.3 При проведении поверки необходимо принять меры защиты от статического напряжения, использовать антистатические заземленные браслеты и заземлённую оснастку. Запрещается проведение измерений при отсутствии или неисправности антистатических защитных устройств.

6 Условия поверки

6.1 Поверку проводить при следующих условиях:	
- температура окружающего воздуха, °С - относительная влажность воздуха, %	23 ±5*; от 5 до 70; от 626 до 795;
- атмосферное давление, мм рт. ст. - напряжение питания. В	от 100 до 250:
- частота. Гц	от 50 до 60.

*температура выбирается в соответствии с руководствами по эксплуатации средств поверки. Все средства измерений, использующиеся при поверке анализаторов, должны работать в нормальных условиях эксплуатации.

7 Подготовка к поверке

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- выполнить операции, оговоренные в документации изготовителя на поверяемый анализатор по его подготовке к работе;
- выполнить операции, оговоренные в РЭ на применяемые средства поверки по их подготовке к измерениям;
 - осуществить прогрев приборов для установления их рабочих режимов.

8 Проведение поверки

- 8.1 Внешний осмотр
- 8.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений и ослабление элементов, четкость фиксации их положения;
- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность печатей и пломб;
 - наличие маркировки согласно требованиям эксплуатационной документации.
- 8.1.2 Результаты поверки считать положительными, если выполняются все перечисленные требования. В противном случае анализатор бракуется.
 - 8.2 Опробование
 - 8.2.1 Подключить анализатор к сети питания. Включить прибор согласно РЭ.
 - 8.2.2 Нажать клавишу «Preset» на корпусе анализатора.
- 8.2.3 Убедиться в возможности установки режимов измерений и настройки основных параметров и режимов измерений анализатора.
- 8.2.4 Результаты опробования считать положительными, если при включении отсутствуют сообщения о неисправности и анализатор позволяет менять настройки параметров и режимы работы.
 - 8.3 Идентификация программного обеспечения

Проверку соответствия заявленных идентификационных данных программного обеспечения (ПО) анализатора проводить в следующей последовательности:

- проверить наименование ПО;
- проверить идентификационное наименование ПО;
- проверить номер версии (идентификационный номер) ПО;
- определить цифровой идентификатор ПО (контрольную сумму исполняемого кода). Для расчета цифрового идентификатора применяется программа (утилита) «MD5_FileChecker». Указанная программа находится в свободном доступе сети Internet (сайт www.winmd5.com).

Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведенным в таблице 3.

Таблица 3

Таблица 3				
Наименование	Идентифика-	Номер версии	Цифровой иден-	Алгоритм вычисле-
ПО		(идентификаци-	тификатор ПО	ния цифрового иден-
	наименвание	онный номер)	(контрольная сум-	тификатора ПО
	ПО	ПО	ма)	
G: 1.4. 1	Программное			MD5
Signal Analyzer	обеспечение	Версия не ни-		
Instrument Soft-	анализаторов	же А12.13		
ware N9038A	спектра N9038A			

- * при работе с версией ПО, более поздней, чем А10.52/ А12.13, цифровой идентификатор уточняется у производителя
- 8.4 Определение относительной погрешности воспроизведения частоты опорного генератора
 - 8.4.1 Соединить выход ВЧ генератора со входом **RF IN** передней панели анализатора.

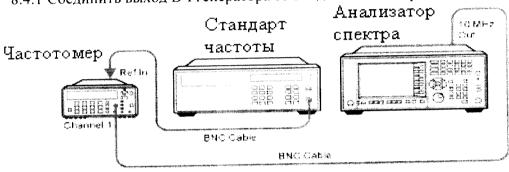


Рисунок 1

- 8.4.2 Для определения относительной погрешности воспроизведения частоты опорного генератора собрать схему согласно рисунку 1, подав сигнал с выхода 10 MHz OUT анализатора на вход частотомера.
 - 8.4.3 Измерить частоту опорного генератора анализатора.
 - 8.4.4 Погрешность воспроизведения частоты (бF) вычислить по формуле (1):

$$\delta F = \frac{F_{_{H2M}} - F_{_{HOM}}}{F_{_{HOM}}},\tag{1}$$

где F_{non} – установленное значение частоты, Γ ц;

 F_{u3u} – измеренное значение частоты, Γ ц.

- 8.4.5 Результаты поверки считать положительными, если погрешность установки частоты (δ_f) составляет $\pm 1 \cdot 10^{-6}$, или $\pm 1 \cdot 10^{-7}$ (опция PFR).
- 8.5 Определение абсолютной погрешности измерений уровня при переключении полос пропускания
- 8.5.1 Для определения погрешности измерения уровня при переключении полос пропускания необходимо отсоединить все кабели от анализатора. Подать сигнал с внутреннего опорного генератора с частотой 50 МГц и амплитудой минус 25 дБ/мВт.
- 8.5.2 На панели анализатора нажать клавишу [Input/Output] -> RF Calibrator -> 50 МН д. После этого выбрать центральную частоту измерений 50 МГц и установить полосу пропускания 30 кГц и зафиксировать измеренное значение уровня (опорный уровень), нажав клавиши [Peak Search]. [Marker] -> Delta. Изменяя значения полос пропускания и устанавливая

значение RBW в соответствии с таблицей 5 (нажимая каждый раз клавишу [Peak Search]) фиксировать значения погрешности измерений уровня.

8.5.3 Результаты поверки считать удовлетворительными, если значение абсолютной погрешности измерений уровня при переключении полос пропускания находится в пределах. указанных в таблице 5.

. Таблица 5

Таблица 5.			Маканиал пое значение
Значение	Минимальное значе-	Измеренное значение по- грешности, дБ	Максимальное значение погрешности, дБ
RBW	ние погрешности, дБ	трешности, до	1
8 МГц	1		1
6 МГц	-1		1
5 МГц	-1		1
4 МГц	-1		1
3 МГц	-0,1		0,1
2 МГц	-0,1		0,1
1 МГц	-0,05		0,05
500 кГц	-0,05		0,05
300 κΓμ	-0,05		0,05
200 κΓμ	-0,05		0,05
	-0,05		0,05
100 κΓц	-0,03	Опорный уровень	
30 кГц		Опорный уровень	0,05
10 кГц	-0,05		
1 кГц	-0,05		0,05
100 Гц	-0,05		0,05
1 Гц	-0,05		0,05

- 8.6 Определение абсолютной погрешности измерений уровня гармонического сигна-
- ла 8.6.1 Абсолютную погрешность измерений уровня гармонического сигнала определяют при помощи комбинации из ступенчатых аттенюаторов 8494G и 8496G. Уровень ослабления выставляется с помощью модуля управления ступенчатыми аттенюаторами.
- 8.6.2 Собрать схему измерений согласно рисунку 2. Подготовить к работе измеритель мощности с измерительным преобразователем 8482A согласно РЭ. На генераторе установить сигнал с частотой 50 МГц, уровень 12 дБ, уровень ослабления ступенчатых аттенюаторов 0 дБ и измерить значение погрешности сигнала с помощью измерителя мощности. На измерителе мощности должно быть показания равное 0 дБ/мВт ±погрешность соединения. Данную погрешность необходимо учитывать в дальнейших измерениях.

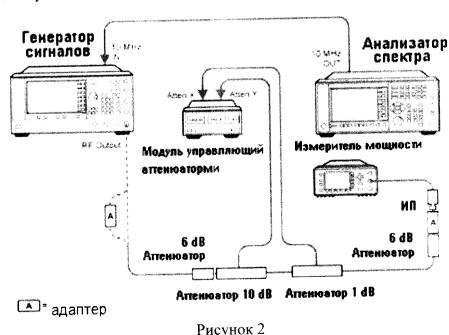
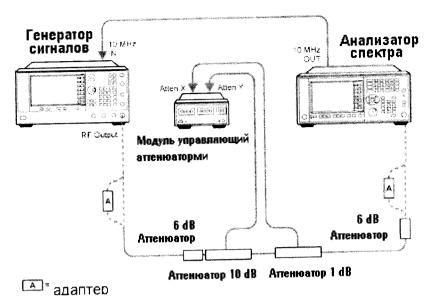



Рисунок 2

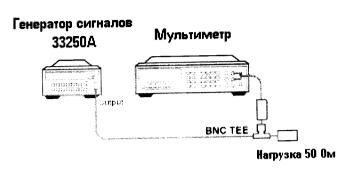
8.6.3 Отсоединить измеритель мощности и подключить анализатор спектра согласно рисунку 3.

Рисунок 3

8.6.4 На анализаторе спектра установить центральную частоту 50 МГц, предусилитель выключить, установить полосу пропускания и полосу обзора согласно таблице 4. Последовательно изменяя ступени ослабления ступенчатого аттенюатора, произвести измерения уровня входного сигнала и вычислить погрешность по формуле:

 $\Delta = \alpha_{\rm H} - \alpha_{\rm H}$

Где $\alpha_{\scriptscriptstyle \rm H}$ – установленное значение ослабления


 α_{u} – измеренное значение на анализаторе спектра

8.6.5 Далее на анализаторе спектра включить предусилитель и произвести измерения на ступенях ослабления аттенюатора согласно таблице 6.

Таблица	6	·	T	TI	Интервал допу-
Значение входного уровня сигна- ла, дБ/мВт	Установленная полоса пропус- кания, кГц	Значение установленной полосы обзора, кГц	Измеренное значение уровня, дБ/мВт	Погрешность измерения уровня сигнала, дБ/мВт	стимой погреш- ности, дБ/мВт
ла, дв/мвт -10	820,00	4990,00			±0,33
-12	360,00	4990,00			±0,33
-20	47,00	4982,00			±0,33
-25	30,00	3180,00			±0.33
-35	4,70	498,20			±0,33
-50	2,00	212,00			±0,33
		едусилитель вкл	ючен (опция	110)	
-50	2,00	212,00			±0,4

- 8.6.6 Результаты поверки считать удовлетворительными, если значение абсолютной погрешности измерений уровня не превышает значений, указанных в таблице 6.
 - 8.7 Определение неравномерности амплитудно-частотной характеристики
- 8.7.1 Неравномерность АЧХ в установленной полосе частот определять методом «постоянного входа».
- $8.7.2~\rm Для~onpedeneния$ неравномерности AЧX в частотном диапазоне от 3 до $3\times10^5~\rm \Gamma u$ используют генератор сигналов произвольной формы 33250A и мультиметр 3458A (рисунок

4). На генераторе установить уровень выходного сигнала -10 дБ/мВт. Произвести измерения погрешности уровня выходного сигнала генератора на частотах 3, 50, 100, 500, 1×10^3 , 5×10^4 , 1×10^5 , 3×10^5 Гц с помощью мультиметра. Зафиксировать погрешность измерения.

Рисунок 4

8.7.3 Соединить генератор с анализатором, как показано на рисунке 5. На анализаторе установить величину входного ослабления 0 дБ, полосу обзора 1 МГц. Произвести измерения неравномерности АЧХ на частотах 3, 50, 100, 500, 1×10^3 , 5×10^4 , 1×10^4 , 1×10^5 , 3×10^5 Гц. Полученные значения зафиксировать, вычислить погрешность.

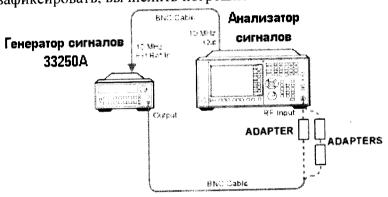
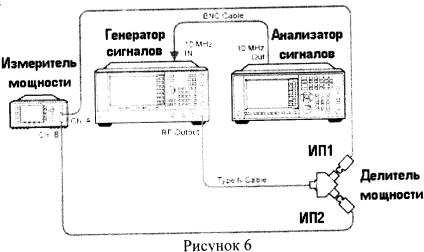



Рисунок 5.

8.7.4 Для определения неравномерности AЧX в частотном диапазоне от 3×10^5 до 3.6×10^9 Гц используют генератор сигналов E8257D, двухпортовый измеритель мощности E4419A с измерительными преобразователями 8482A и делитель мощности. Подготовить измеритель мощности к работе. Собрать схему согласно рисунку 6. На генераторе установить уровень выходного сигнала -10 дБ/мВт. Произвести измерения погрешности деления делителя мощности на частотах 3×10^5 , 1×10^6 , 5×10^6 , 1×10^7 , 15×10^7 , 45×10^7 , 95×10^7 , 1.25×10^9 , 1.85×10^9 . 2.25×10^9 , 2.95×10^9 , 3.55×10^9 Гц. Зафиксировать погрешность деления и учитывать ее в дальнейших измерениях.

8.7.5 Отсоединить ИП1 от делителя. Освободившийся рукав делителя соединить с анализатором спектра (рисунок 7). На анализаторе установить DC coupled, предусилитель выключен, полоса обзора 1 МГц, ослабление аттенюатора 10 дБ. Произвести измерения уровня сигнала уровня -10 дБ/мВт на частотах 3×10^5 , 1×10^6 , 5×10^6 , 1×10^7 , 15×10^7 , 45×10^7 . 95×10^7 , 1.25×10^9 , 1.85×10^9 , 2.25×10^9 , 2.95×10^9 , 3.55×10^9 Гц. Полученные значения зафиксировать, вычислить погрешность.

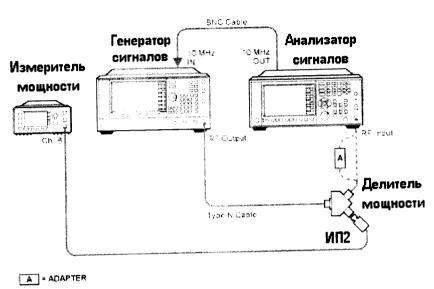


Рисунок 7

8.7.6 Для определения неравномерности АЧХ с включенным предусилителем используют аттенюатор с показанием ослабления 20 дБ. Соединить приборы как указано на рисунке 8. С генератора подать сигнал амплитудой -10 дБ/мВт. Произвести измерения погрешности деления делителя мощности на частотах 3×10^5 , 1×10^6 , 5×10^6 , 1×10^7 , 15×10^7 , 45×10^7 , 95×10^7 , 1.25×10^9 , 1.85×10^9 , 2.25×10^9 , 2.95×10^9 , 3.55×10^9 Гц. Зафиксировать погрешность деления и учитывать ее в дальнейших измерениях.

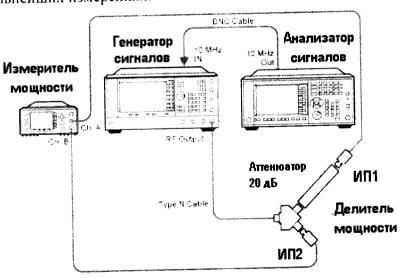


Рисунок 8

8.7.7 Отсоединить ИП1 от делителя. Освободившийся рукав делителя с аттенюатором соединить с анализатором спектра. На анализаторе установить DC coupled, предусилитель включен, полоса обзора 1 МГц, ослабление аттенюатора 0 дБ. Произвести измерения уровня сигнала уровня -10 дБм на частотах 3×10^5 , 1×10^6 , 5×10^6 , 1×10^7 , 15×10^7 , 45×10^7 , 95×10^7 . 1.25×10^9 , 1.85×10^9 , 2.25×10^9 , 2.95×10^9 , 3.55×10^9 Гц. Полученные значения зафиксировать, вычислить погрешность.

8.7.8 Для определения неравномерности АЧХ с выключенным предусилителем в частотном диапазоне от 3.6×10^9 до 8×10^9 Гц, 13×10^9 Гц, 26.5×10^9 Гц используют генератор сигналов E8257D (опция 540 или 550), двухпортовый измеритель мощности N1914A с измерительными преобразователями 8485A и делитель мощности (с рабочим частотным диапазоном до 26.5 ГГц). Для определения неравномерности АЧХ в частотном диапазоне от 3.6×10^9 до 43×10^9 Гц используют генератор сигналов E8257D (с опцией 550), двухпортовый измеритель мощности N1914A с измерительными преобразователями 8487A и делитель мощности (с рабочим частотным диапазоном до 50 ГГц). Подготовить измеритель мощности к работе. Собрать схему согласно рисунку 6. На генераторе установить уровень выходного сигнала -10 дБ/мВт. Произвести измерения погрешности деления делителя мощности на частотах 3.65×10^9 , 5.05×10^9 , 6.05×10^9 , 7.05×10^9 , 8.05×10^9 , 8.35×10^9 , 9.05×10^9 , 10.05×10^9 . 11.05×10^9 . 12.05×10^9 , 13.05×10^9 , 13.55×10^9 , 14.05×10^9 , 15.05×10^9 , 16.05×10^9 , 17.05×10^9 , 18.05×10^9 , 19.05×10^9 , 20.05×10^9 , 21.05×10^9 , 22.05×10^9 , 23.05×10^9 , 24.05×10^9 , 25.55×10^9 , 26.05×10^9 ,

8.7.9 Отсоединить ИП1 от делителя. Освободившийся рукав делителя соединить с анализатором спектра (рисунок 7). На анализаторе установить DC coupled, предусилитель выключен, полоса обзора 1 МГц, ослабление аттенюатора 10 дБ. Произвести измерения уровня сигнала уровня -10 дБ/мВт на частотах 3.65×10^9 , 5.05×10^9 , 6.05×10^9 , 7.05×10^9 , 8.05×10^9 , 8.35×10^9 , 9.05×10^9 , 10.05×10^9 , 11.05×10^9 , 12.05×10^9 , 13.05×10^9 , 13.55×10^9 , 14.05×10^9 , 15.05×10^9 , 16.05×10^9 , 17.05×10^9 , 18.05×10^9 , 19.05×10^9 , 20.05×10^9 , 21.05×10^9 , 22.05×10^9 , 23.05×10^9 , 24.05×10^9 , 25.55×10^9 , 26.05×10^9 , 26.45×10^9 , 30.05×10^9 , 32.05×10^9 , 35.05×10^9 , 37.05×10^9 , 43×10^9 , 44×10^9 (в зависимости от типа анализатора спектра) Гц. Полученные значения зафиксировать, вычислить погрешность.

8.7.10 Для определения неравномерности АЧХ с включенным предусилителем в частотном диапазоне от 3,6×10⁹ до 8×10⁹ Гц, 13×10⁹ Гц, 26,5×10⁹ Гц используют генератор сигналов E8257D (опция 540), двухпортовый измеритель мощности N1914A с измерительными преобразователями 8485D и делитель мощности (с рабочим частотным диапазоном до 26.5 ГГц). Для определения неравномерности АЧХ в частотном диапазоне от 3,6×10⁹ до 43×10⁹ Гц. 44×10⁹ Гц используют генератор сигналов E8257D (опция 540) или E8257D (опция 550), двухпортовый измеритель мощности N1914A с измерительными преобразователями 8487D и делитель мощности (с рабочим частотным диапазоном до 50 ГГц). Подготовить измеритель мощности к работе. Собрать схему согласно рисунку 6. На генераторе установить уровень выходного сигнала -10 дБ/мВт. Произвести измерения погрешности деления делителя мощности на частотах из п 8.7.8. Зафиксировать погрешность деления и учитывать ее в дальнейших измерениях.

8.7.11 Отсоединить ИП1 от делителя. Освободившийся рукав делителя соединить с анализатором спектра (рисунок 7). На анализаторе установить DC coupled, предусилитель выключен, полоса обзора 1 МГц, ослабление аттенюатора 10 дБ. Произвести измерения уровня сигнала уровня -10 дБ/мВт на частотах из п. 8.7.9. Полученные значения зафиксировать, вычислить погрешность.

8.7.12 Результаты поверки считать удовлетворительными, если значения неравномерности АЧХ анализатора не превышают значений, указанных в описании типа.

8.8 Определение относительного уровня помех, обусловленных гармоническими искажениями

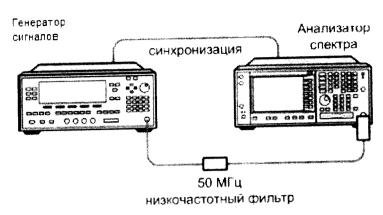


Рисунок 9

- 8.8.1 Соединить оборудование в соответствии с рисунком 9.
- 8.8.2 На анализаторе установить входное ослабление 10 дБ, нажатием [AMPTD]-> Attenuation -> Atten -> 10 dB
- 8.8.3 При измерении уровня второй гармоники необходимо использовать фильтры нижних частот соответствующие частоте несущей. Подать на вход анализатора гармонический сигнал частотой fl и измерить по отсчетному устройству уровень помехи на частоте 2fl.
 - 8.8.4 Измерения проводить в полосе частот от 10 МГц до 22,25 ГГц
- 8.8.5 Результаты поверки считать удовлетворительными, если уровень помех не превысит значений, указанных в описании типа.
 - 8.9 Определение уровня фазового шума
- 8.9.1 Измерение фазового шума проводят с помощью генератора E8257D (с опцией UNY и включенным пониженным уровнем фазовых шумов) (рисунок 10).

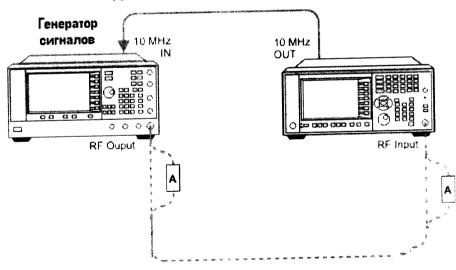


Рисунок 10

- 8.9.2 Установить на анализаторе на центральную частоту 1 ГГц.
- 8.9.3 На генераторе установить частоту 1000 МГц и амплитуду 5 дБ/мВт.
- 8.9.4 Подстроить амплитуду выходного сигнала ВЧ генератора так, чтобы пик сигнала находился в пределах 1 дБ от верхнего края экрана.
- 8.9.5 Установить на анализаторе значения полосы обзора 3 кГц, 30 кГц, 300 кГц и МГц для каждой отстройки от центральной частоты соответственно.
 - 8.9.6 Повторить следующие шаги для каждой установки полосы обзора:
 - а) Установить маркер М1 на смещенную частоту, указанную в таблице 8.

б) Зафиксировать значения уровня фазового шума по показаниям дельта-маркера.

8.9.7 Результаты поверки считать удовлетворительными, если измеренные значения уровня фазового шума ниже значений, указанных в таблице 7.

Таблица 7

Таолица /	-F-/F 110 60700
Значения отстройки от центральной частоты 1	Уровень фазового шума, дБн/Гц, не более
ГГц	
100 Гц	-84
10 кГц	-103
	-115
100 кГц	-135
1 МГц	150

8.10 Определение среднего уровня собственных шумов

8.10.1 Средний уровень собственных шумов измерять в полосе пропускания 1 кГц при отсутствии сигнала на входе прибора.

8.10.2 Установить на входной RF-разъем анализатора согласованную короткозамкнутую нагрузку 50 Ом (из состава набора мер коэффициентов передачи и отражения Agilent 85054D (Agilent 85052D).

8.10.3 Установить на анализаторе следующие значения параметров, последовательно нажимая клавиши:

Mode, Spectrum Analyzer, Mode Preset

FREQ Channel, Center Freq, 10, MHz

SPAN X Scale, Span, 10, kHz

AMPTD Y Scale, -70, dBm

AMPTD Y Scale, Attenuation, Atten, 0, dB

BW, Res BW, 1, kHz

BW. Video BW, 100, Hz

Meas Setup, Average/Hold, Number, 20, Enter

Trace/Detector, Trace Average

Single

- 8.10.4 Нажать клавишу Restart и дождаться установления значения Average/Hold равным 20/20.
 - 8.10.5 Нажать клавиши View/Display, Display, Display Line, On.
- 8.10.6 Вращая ручку управления анализатора установить линию дисплея на среднее значение отображаемой на экране дисплея амплитуды.
- 8.10.7 Нормализовать полученное значение уровня сигнала к полосе пропускания 1 Гц путем прибавления к полученному значению минус 30 дБ/мВт. Например, если измеренное значение соответствует минус 126 дБ/мВт, то нормализованное значение будет минус 156 лБ/мВт.
- $8.10.8\ \Pi$ овторить измерения для каждого из значений центральной частоты f_n из таблицы 8.

Таблица 8. Центральная частота, f _n	Допустимое значение, дБ/мВт	Измеренное значение, дБ/мВт
Пред	усилитель и преселектор выкл	ючен
20 Гц	-97	
100 Γμ	-106	
1 кГц	-118	
9 кГц	-119	
100 кГц	-131	
1 МГц	-150	
2,1 ГГц	-150	
3,6 ГГц	-148	
8.4 ГГц	-148	
13.6 ГГц	-147	

Центральная частота, f _n	Допустимое значение, дБ/мВт	Измеренное значение, дБ/мВт
17,1 ГГц	-141	
20 ΓΓμ	-142	
26,5 ГГц	-135	
34,5 ГГц	-141	
44,0 ΓΓμ	-135	
Предусил	итель включен, преселектор в	выключен
100 κΓц	-144	
1 МГц	-162	
2,1 ГГц	-163	
3,6ГГц	-161	
8,4 ГГц	-164	
13,6 ГГц	-162	
17,1 ГГц	-160	
20 ГГц	-158	
26,5 ГГц	-155	
34,5 ГГц	-156	
44,0 ГГц	-150	
Предуси	питель выключен, преселекто	р включен
20 Γμ	-92	
100 Гц	-101	
1 кГц	-114	
9 кГц	-118	
100 κΓц	-130	
3 МГц	-147	
30 МГц	-150	
300 МГц	-151	
600 МГц	-153	
1 ГГц	-151	
2 ГГц	-150	
2,5 ГГц	-152	
3 ГГц	-151	
3,6 ГГц	-148	
8,4 ГГц	-148	
13,6 ГГц	-147	
17,1 ГГц	-141	
20 ГГц	-142	
26,5 ГГц	-135	
34,5 ГГц	-141	
44,0 ГГц	-135	a principali
	илитель включен, преселектор -119	O BRITOTOTI
1 кГц		
9 кГц	-143	
100 κΓιι	-154 -166	+
2 МГц	-158	
30 МГц	-159	
600 МГц	-157	
800 МГц	-158	
1 ГГц	-156	
2 ΓΓ _Ц 2,75 ΓΓ _Ц	-160	
2,/511μ 3,6 ΓΓμ	-157	
8.4 ГГц	-164	
8.4 ГГ ц 13,6 ГГ ц	-162	
17,1 ГГц	-160	
20 ΓΓμ	-158	
26,5 ΓΓ _Ц	-155	
<u>26,5 ΓΓ μ</u> 34,5 ΓΓ μ	-156	
44,0 ΓΓμ	-150	
44,011Ц	1 - 100	

8.10.9 Результаты поверки считать положительными, если средний уровень собственных шумов анализатора не превысит значений, указанных в таблице.

9 Оформление результатов поверки

- При положительных результатах поверки на анализатор выдается свидетельство установленной формы.
 - 9.2 На оборотной стороне свидетельства о поверке записываются результаты поверки.
- 9.3 В случае отрицательных результатов поверки поверяемый анализатор к дальнейшему применению не допускается. На него выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин забракования.

Начальник отделения ФГУП «ВНИИФТРИ» О.В. Каминский