ООО «Производственное Объединение ОВЕН»

СОГЛАСОВАНО

УТВЕРЖДАЮ

Генеральный директор ОО Производственное Объединение ОВЕНЬ

* MOCKE

2015 г.

Заместитель директора по качеству ФГУП «ВНИИМС» Н.В. Иванникова 2015 г.

ПРЕОБРАЗОВАТЕЛИ ОТНОСИТЕЛЬНОЙ ВЛАЖНОСТИ И ТЕМПЕРАТУРЫ ИЗМЕРИТЕЛЬНЫЕ ПВТ100

МЕТОДИКА ПОВЕРКИ КУВФ.413631.100МП

1 Введение

Настоящая методика распространяется на преобразователи относительной влажности и температуры измерительные ПВТ100 (далее по тексту – преобразователи или приборы), изготавливаемые ООО «ПО ОВЕН», г. Москва, и устанавливает методы и средства их первичной и периодической поверок.

Интервал между поверками – 1 год.

2 Операции поверки

При проведении первичной и периодической поверки должны выполняться операции, указанные в таблице 2.1

Таблица 2.1

Наименование операции	Номер пункта МП	Проведение операции при	
		первичной	периодичес-
		поверке	кой поверке
1 Внешний осмотр	6.1	Да	Да
2 Опробование	6.2	Да	Да
3 Определение абсолютной погрешности	6.3	Да	Да

3 Средства поверки

При проведении поверки применяют средства измерений, указанные в таблице 3.1 Таблица 3.1

Таблица 3.1	
Наименование и тип средств измерений и оборудования	Основные технические характеристики
Генератор влажного воздуха HygroGen модификации HygroGen 2	Диапазон воспроизведения относительной влажности от 0 до 100%, диапазон воспроизведения температуры от +5+50 °C, пределы допускаемой абсолютной погрешности воспроизведения относительной влажности ±0,5 %, пределы допускаемой абсолютной погрешности воспроизведения
Генератор влажного газа эталонный «Родник-4М»	температуры: ±0,1 °C (Госреестр № 32405-11) Диапазон воспроизведения относительной влажности: 1098 % (при температуре от плюс 15 до плюс 80 °C), пределы допускаемой абсолютной погрешности воспроизведения относительной влажности: ±1,0 %
Измеритель комбинированный Testo 645 с зондом 0636 9741	Диапазон измерения относительной влажности: 595 %, пределы допускаемой абсолютной погрешности измерения относительной влажности: ±1,0 %;
Камера климатическая КХТВ-100-О	Диапазон воспроизводимых температур: -70+80 °С, диапазон воспроизведения относительной влажности: 1098 %
Цифровой прецизионный термометр сопротивления DTI-1000	Диапазон измеряемых температур: -50+650 °C; пределы допускаемой основной абсолютной погрешности: ±(0,03 + ед. мл. разряда) °C (в диапазоне: -50+400 °C); ±(0,06 + ед. мл. разряда) °C (в диапазоне: св.+400+650 °C)

Наименование и тип средств измерений	Основные технические характеристики
и оборудования	
Термостаты жидкостные прецизионные	Номер в федеральном информационном фонде
переливного типа моделей ТПП-1.0, ТПП-	по обеспечению единства измерений: 33744-07
1.3	_
Калибратор многофункциональный и	Номер в федеральном информационном фонде
коммуникатор BEAMEX MC6 (-R)	по обеспечению единства измерений: 52489-13
Программно-аппаратный комплекс с	
интерфейсом RS485 и поддержкой	
протокола Modbus, позволяющий	
визуализировать измеренные значения	
температуры и относительной влажности	

Примечания:

- 1 Все средства измерений, применяемые при поверке, должны иметь действующие свидетельства о поверке.
- 2 Допускается применение других средств измерений с метрологическими характеристиками, не хуже указанных в таблице 3.1, и разрешенных к применению в Российской Федерации.

4 Требования безопасности

При проведении поверки необходимо соблюдать:

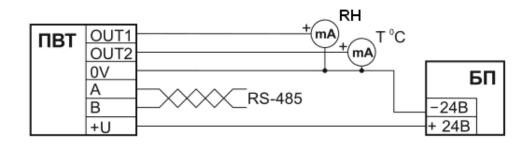
- требования безопасности, которые предусматривают «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» ПОТ РМ-016-2001;
- указания по технике безопасности, приведенные в эксплуатационной документации на эталонные средства измерений и средства испытаний;
- указания по технике безопасности, приведенные в руководстве по эксплуатации преобразователей.

К проведению поверки допускаются лица, аттестованные на право проведения поверки данного вида средств измерений, ознакомленные с руководством по эксплуатации преобразователей и прошедшие инструктаж по технике безопасности.

5 Условия поверки и подготовка к ней

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С 20±5;
- относительная влажность окружающего воздуха, %, не более 80;
- атмосферное давление, кПа от 86 до 106,7;


6 Проведение поверки

6.1 Внешний осмотр

6.1.1. При внешнем осмотре устанавливают отсутствие механических повреждений, коррозии, нарушений покрытий, надписей и других дефектов, которые могут повлиять на работу системы и на качество поверки.

6.2.Опробование

6.2.1 Подключить к источнику питания и вторичному измерительному прибору преобразователь с выходным сигналом постоянного тока по схеме, представленной на рисунке 1 (для преобразователя с выходным сигналом постоянного напряжения по схеме, представленной на рисунке 2).

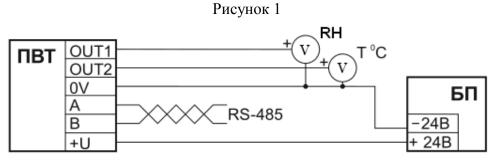


Рисунок 2

6.2.2 На дисплее внешнего измерительного прибора наблюдают индикацию показаний, соответствующих текущим значениям температуры или относительной влажности в поверочной лаборатории.

6.3 Определение абсолютной погрешности

- 6.3.1 Определение абсолютной погрешности канала измерений относительной влажности преобразователя.
- 6.3.1.1 Определение абсолютной погрешности канала измерений относительной влажности преобразователя проводится в рабочей камере эталонного генератора влажного газа (воздуха) (далее по тексту генератор), или в климатической камере методом сравнения с эталонным гигрометром.

Погрешность определяют при трех значениях воспроизводимой относительной влажности: 20 ± 15 %, 50 ± 15 %, 70 ± 15 %.

- 6.3.1.2 В соответствии с руководством по эксплуатации подготавливают к работе эталонный генератор или климатическую камеру.
- 6.3.1.3 При установке поверяемого преобразователя в камеру необходимо, чтобы весь зонд преобразователя располагался полностью внутри рабочей камеры (его поверхность не должна контактировать с окружающей средой) и находился в потоке воздуха. Эталонный гигрометр необходимо располагать в непосредственной близости от поверяемого преобразователя.
 - 6.3.1.4 Задают требуемое значение относительной влажности.
- 6.3.1.5 При поверке, измерительный зонд выдерживают в рабочей камере при установившемся значении относительной влажности не менее 30 мин, после чего снимают не менее 10 показаний относительной влажности (в течение 5 минут) поверяемого прибора.

Показания преобразователя снимают с помощью калибратора многофункционального и коммуникатора BEAMEX MC6 (-R).

6.3.1.6 Абсолютная погрешность преобразователя определяется по формуле 1:

$$\Delta = \frac{\Delta_t \cdot (R \cdot (t) h_{\text{ff}} - {}_{\text{a}} R_{\text{x}} \cdot (t) h_{\text{ff}})}{1 \cdot q_{\text{A}} \cdot 0} \tag{1}$$

где: Δ_t – значение приведенной погрешности измерений преобразователя, %;

Rh(t)_{max}, Rh(t) _{min} - соответственно верхний и нижний пределы шкалы преобразования

измеренных сигналов в унифицированные аналоговые сигналы постоянного тока или напряжения в эквиваленте относительной влажности (температуры), % (°C).

Приведенная погрешность в зависимости от типа выходных аналоговых сигналов определяется по формуле 2:

$$\Delta_{t} = \frac{I(U)_{H} - \frac{I}{3}(U)_{p}}{I(U)_{H}} \cdot 1^{c} \%$$
 (2)

где: $I(U)_{изм}$ – значение измеренного выходного тока (напряжения) в поверяемой точке;

 $I(U)_{H}$ – нормируемое значение выходного сигнала (16 мА или 10 В).

I (U) $_{pac^{q}}$ — расчетное значение выходного сигнала (MA или B), соответствующие значению относительной влажности (температуры) измеренного эталонным CV, определяемое по формуле 3:

$$I(U)_{pacu} = 4(0) + \frac{Rh(t)_{9} - Rh(t)_{\min}}{Rh(t)_{\max} - Rh(t)_{\min}} \cdot 16(u\pi u \cdot 10)$$
 (3)

где: $Rh(t)_{min}$, $Rh(t)_{max}$ — соответственно верхний и нижний пределы шкалы преобразования измеренных сигналов в унифицированные аналоговые сигналы постоянного тока или напряжения в эквиваленте относительной влажности (температуры), % (°C);

 $Rh(t)_{\scriptscriptstyle 3}$ – среднее арифметическое значение показаний эталонных СИ, % (°C).

Операции по п.6.3.1.6 выполняют для всех контрольных точек относительной влажности.

Значения абсолютной погрешности в контрольных точках не должны превышать значений, указанных в приложении А.

При наличии интерфейса RS485 с протоколом обмена MODBUS у преобразователя, абсолютная погрешность показаний может определяться по формуле 4:

$$\Delta = \pm (\gamma_{\Pi} - \gamma_{\Theta}) \tag{4}$$

где: $\gamma_{\rm п}$ – среднее арифметическое значение относительной влажности (температуры) поверяемого преобразователя снятое с программно-аппаратного комплекса или с дисплея персонального компьютера, % (°C);

 $^{\gamma}$ _э- среднее арифметическое значение относительной влажности (температуры) по показаниям эталонного термометра (гигрометра), % (°C).

- 6.3.2 Определение абсолютной погрешности канала измерений температуры преобразователя.
- 6.3.2.1 Определение абсолютной погрешности канала измерений температуры преобразователя проводится в жидкостных или воздушных термостатах (криостатах) методом сравнения с эталонным термометром.

Погрешность определяют при пяти (при первичной поверке) или при трех (при периодической поверке) значениях рабочего диапазона измерений температуры преобразователей. Значение контрольных точек температуры определяются по формуле (5):

$$T_i = T_{\rm m} + \frac{T_{\rm m} - T_{\rm m}}{4(2)} \cdot \dot{i} \pm 5$$
 (5)

где: i=0...2 (при периодической поверке);

i=0..4 (при первичной поверке).

6.3.2.2 Зонд термометра DTI-1000 и зонд поверяемого преобразователя помещают в термостат (криостат). При использовании жидкостного термостата (криостата) зонд

поверяемого преобразователя предварительно помещают в защитный герметичный теплопроводный чехол (гильзу). Зонд термометра DTI-1000 погружают на глубину не менее 100 мм.

- 6.3.2.3 В соответствии с эксплуатационной документацией на термостат (криостат) устанавливают температурную точку.
- 6.3.2.4 После установления заданной температуры и установления теплового равновесия между эталонным термометром, измерительным зондом (преобразователем) и термостатирующей средой (стабилизации показаний), снимают не менее 3 показаний (в течение 5 минут) с помощью калибратора многофункционального и коммуникатора ВЕАМЕХ МС6 (-R).
- 6.3.2.5 Обрабатывают полученные данные и рассчитывают абсолютную погрешность, согласно п.6.3.1.6. Погрешность не должна превышать нормируемых значений пределов допускаемой абсолютной погрешности, приведенных в приложении А.
 - 6.3.2.6 Выполняют операции по п.6.3.1.6 для всех контрольных температурных точек.

7 Оформление результатов поверки

- 7.1 Приборы прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. На них оформляется свидетельство о поверке в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г. и (или) ставится знак поверки в паспорт.
- 7.2 При отрицательных результатах поверки, в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г., оформляется извещение о непригодности.
- 7.3 По согласованию с заказчиком допускается исключать часть диапазона измерений, в котором в процессе поверки установлено несоответствие нормируемым значениям метрологических характеристик, приведенных в Приложении А.
- 7.4 По требованию заказчика допускается сокращать часть нормируемого диапазона измерений исходя из конкретных условий применения приборов.

Метрологические и технические характеристики преобразователей относительной влажности и температуры измерительных ПВТ100

Диапазоны измерений, пределы допускаемых абсолютных погрешностей, а также диапазоны при измерении и преобразовании этих вменения выходных аналоговых сигналов приведены в таблице 1.

Таблица 1

Наименование характеристики	Значение	
Диапазон измерений (показаний) относительной влажности, %	от 5 до 95 (от 0 до 100)	
Пределы допускаемой абсолютной погрешности канала		
измерений относительной влажности, %		
в диапазоне свыше 20 до 80 %	$\pm 2,5;$	
в диапазоне от 5 до 20 % и свыше 80 до 95 %	±3,5	
Диапазон измерений температуры, °С:		
для исполнений ПВТ100-Н4, ПВТ100-К1	от минус 40 до плюс 80;	
для исполнения ПВТ100-Н5	от минус 40 до плюс 80;	
	от минус 40 до плюс 120	
Пределы допускаемой абсолютной погрешности канала	-	
измерений температуры, °С		
в диапазоне свыше минус 20 до плюс 80 °C, не более	±0,5;	
в диапазоне от минус 40 до минус 20 °C и свыше		
плюс 80 до плюс 120 °C, не более	±0,7	
Диапазон выходных аналоговых электрических сигналов:		
- постоянного тока, мА:	от 4 до 20;	
- напряжения, В:	от 0 до 10	
Напряжение питания, В	от 11 до 30 (номинальное	
папряжение питания, в	значение 24 В)	
Масса, кг, не более	1,0	
Габаритные размеры корпуса, мм:		
для исполнения ПВТ100-Н4	$82 \times 80 \times 55;$	
для исполнения ПВТ100-К1	$102 \times 80 \times 55$;	
для исполнения ПВТ100-Н5	$102 \times 80 \times 55$	
Габаритные размеры первичного преобразователя, мм:		
для исполнения ПВТ100-Н4	\emptyset 16 × 96;	
для исполнения ПВТ100-К1	\emptyset 16 × 201;	
для исполнения ПВТ100-Н5	\emptyset 16 × 87;	
	Ø16 × 75	
Степень защиты корпуса по ГОСТ 14254-96	IP20	
Средняя наработка на отказ, ч, не менее	50 000	
Средний срок службы, лет	6	
Рабочие условия эксплуатации:		
– температура окружающей среды, °С:	от минус 40 до плюс 80	
– относительная влажность воздуха, %:	до 95 (без конденсации)	
– атмосферное давление, кПа	от 84,0 до 106,7	