УТВЕРЖДАЮ

Зам. руководителя ГЦИ СИ ФБУ «ЦСМ Московской области», директор Центрального отделения

С.Г. Рубайлов

2013 г.

Генераторы сигналов специальной формы АКИП-3413/1, АКИП-3413/2, АКИП-3413/3

Методика поверки $54882137/2-13M\Pi$

пгт Менделеево Московская обл. 2013

Настоящая методика поверки распространяется на генераторы сигналов специальной формы АКИП-3413/1, АКИП-3413/2, АКИП-3413/3 (далее по тексту – генераторы), предназначенные для генерации сигналов стандартных форм: синусоидального, прямоугольного, треугольного, импульсного, шумового, постоянного тока, а также сигналов произвольной формы. и устанавливает методы и средства их первичной и периодической поверок.

Интервал между поверками – один год.

1 Операции поверки

- 1.1 При первичной и периодической поверке генераторов выполняются операции, указанные в таблице 1.
- 1.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и генератор бракуется.

Таблица 1

,	Номер	Проведени	е операции при
Наименование операции	пункта до-	первичной	периодической
паименование операции	кумента по	поверке	поверке
	поверке		
Внешний осмотр	7.1	Да	Да
Опробование	7.2	Да	Да
Определение метрологических характеристик	7.3	Да	Да
Определение основной относительной погрешно-	7.3.1	Да	Да
сти установки частоты			
Определение абсолютной погрешности установки	7.3.2	Да	Да
амплитуды синусоидального сигнала			
Определение неравномерности АЧХ сигнала си-	7.3.3	Да	Да
нусоидальной формы относительно частоты 1			
кГц			
Определение абсолютной погрешности установки	7.3.4	Да	Да
смещения постоянной составляющей			
Определение суммарных гармонических искаже-	7.3.5	Да	Да
ний на частотах до 20 кГц			
Определение уровня гармоник в выходном сину-	7.3.6	Да	Да
соидальном сигнале по отношению к уровню не-			
сущей			
Определение длительности фронта и среза сигна-	7.3.7	Да	Да
лов прямоугольной формы			
Определение абсолютной погрешности установки	7.3.8	Да	Да
времени нарастания и среза импульсных сигналов			

2 Средства поверки

- 2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.
- 2.2 Допускается применять другие средства измерений, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь действующие свидетельства (отметки в формулярах или паспортах) о государственной поверке.

Таблица 2

Номер	Наименование и тип основного или вспомогательного средства поверки; обо-
пункта ме-	значение нормативного документа, регламентирующего технические требова-
тодики по-	ния и метрологические и основные технические характеристики средства по-
верки	верки.
7.3.1	Частотомер Ч3-63/1, частотный диапазон 0,1 Гц – 1500 МГц, погрешность из-
	мерения $\pm 5 \cdot 10^{-7}$; стандарт частоты рубидиевый FS-725, выходные частоты 5 и
	$10 \mathrm{MГ}$ ц (синус), погрешность $\pm 5 \cdot 10^{-10} \mathrm{sa} 1 \mathrm{год}$
7.3.2-7.3.4	Вольтметр цифровой универсальный B7-78/1, погрешность ± 0.09 %, диапазон
	от 0 до 1050 В. Вольтметр В3-49, диапазон частот 20-109 Гц, погрешность по
	амплитуде 0,22 %
7.3.5	Измеритель нелинейных искажений С6-12, частотный диапазон от 10 Гц до
	199,9 кГц, диапазон измеряемых коэффициентов гармоник от 0,03 до 100 %, по-
	грешность в диапазоне частот от 20 Гц до 20 кГц 0,03 %
7.3.6	Анализатор спектра Agilent E4447A, погрешность по частоте ±100 Гц, погреш-
	ность измерения уровня сигнала ±0,17 дБ
7.3.7, 7.3.8	Осциллограф цифровой запоминающий WaveRunner 204Xi, полоса пропускания
	2 ГГц, время нарастания переходной характеристики 0,2 нс

3 Требования к квалификации поверителей

3.1 К проведению поверки могут быть допущены лица, аттестованные в качестве поверителя и имеющие практический опыт работ в области электротехнических и радиотехнических измерений.

4 Требования безопасности

4.1 При проведении поверки должны соблюдаться все требования безопасности в соответствии с ГОСТ 12.3.019-80.

5 Условия поверки

- 5.1 При проведении поверки должны соблюдаться следующие требования:
- температура окружающей среды (23±5)°С;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до $106 \text{ к}\Pi \text{ a} (630 795 \text{ мм рт. ст.}).$

6 Подготовка к поверке

- 6.1. Поверитель должен изучить руководство по эксплуатации (РЭ) поверяемого прибора и используемых средств поверки.
- 6.2. Поверяемый прибор и используемые средства поверки должны быть заземлены и выдержаны во включенном состоянии в течение времени, указанного в РЭ.

7 Проведение поверки

7.1 Внешний осмотр

При проведении внешнего осмотра проверяются:

- сохранность пломб;
- чистота и механическая исправность разъемов и гнезд;
- наличие предохранителей;
- отсутствие механических повреждений корпуса и ослабления крепления элементов конструкции (определяется на слух при наклонах прибора);
 - сохранность органов управления, четкость фиксации их положения;
 - комплектность прибора согласно РЭ.

Приборы, имеющие дефекты, бракуют.

7.2 Опробование

Опробование проводится после времени самопрогрева, равного 15 мин после включения питания прибора.

Проверяется работоспособность: ЖК дисплея и клавиш управления; режимы, отображаемые на дисплее, при нажатии соответствующих клавиш, должны соответствовать руководству по эксплуатации.

7.3 Определение метрологических параметров

7.3.1 Определение основной относительной погрешности установки частоты

- 7.3.1.1 Подсоединить частотомер, к выходному разъему первого канала на передней панели генератора. При поверке генераторов с опцией 100 частотомер синхронизировать от рубидиевого стандарта частоты FS-725.
- 7.3.1.2 В генераторе выбрать прямоугольную форму сигнала в соответствии с руководством по эксплуатации.
- 7.3.1.3 Установить на генераторе частоту 10 Гц, значение амплитуды сигнала 1 В в соответствии с руководством по эксплуатации.
 - 7.3.1.4 Включить выход (Output On).
- 7.3.1.5 Измерить установленное значение частоты частотомером и значения установленной и измеренной частот занести в таблицу 3.
- 7.3.1.6 Повторить операции по пунктам 7.3.1.3 7.3.1.5 для других частот генератора. При частоте сигнала 1 к Γ ц и выше в генераторе устанавливать синусоидальную форму сигнала.
- 7.3.1.7 Повторить операции по пунктам 7.3.1.3 7.3.1.6 для второго канала генератора.

Таблица 3

Значение установленной на генераторе ча-	Показания частотомера		Нижний Предел	Верхний предел	Нижний пре- дел	Верхний предел
стоты	Канал 1	Канал 2	без опции 100		с опци	лей 100
10 Гц	•		9,99998 Гц	10,00002 Гц	9,999998 Гц	10,000002 Гц
100 Гц			99,9998 Гц	100,0002 Гц	99,99998 Гц	100,00002 Гц
1 кГц			0,999998 кГц	1,000002 кГц	0,9999998 кГц	1,0000002 кГц
10 кГц			9,99998 кГц	10,00002 кГц	9,999998 кГц	10,000002 кГц
100 кГц			99,9998 кГц	100,0002 кГц	99,99998 кГц	100,00002 кГц
1 МГц			0,999998 МГц	1,000002 МГц	0,9999998 МГц	1,0000002 МГц
10 МГц			9,99998 МГц	10,00002 МГц	9,999998 МГц	10,000002 МГц
80 МГц			79,99984 МГц	80,00016 МГц	79,999984 МГц	80,000016 МГц
100 МГц*			99,9998 МГц	100,0002 МГц	99,99998 МГц	100,00002 Гц
120 МГц*			119,99976 МГц	120,0002 МГц	119,999976 МГц	120,000024 МГц
140 МГц**			139,99972 МГц	140,0003 МГц	139,999972 МГц	140,000028 МГц
160 МГц**		•	159,99968 МГц	160,0003 МГц	159,999968 МГц	160,000032 МГц

Примечание: * - проверка на данных частотах проводится только для моделей АКИП-3413/2 и АКИП-3413/3

Результаты поверки считать положительными, если показания частотомера укладываются в пределы, указанные в таблице 3.

7.3.2 Определение абсолютной погрешности установки амплитуды синусоидального сигнала

^{** -} проверка на данных частотах проводится только для модели АКИП-3413/3

- 7.3.2.1 Подсоединить вольтметр В7-78/1 с нагрузкой 50 Ом к выходному разъему первого канала на передней панели генератора.
- 7.3.2.2 В генераторе установить импеданс выхода 50 Ом в соответствии с руководством по эксплуатации.
- 7.3.2.3 В генераторе выбрать синусоидальную форму сигнала и установить частоту 1 кГц в соответствии с руководством по эксплуатации.
- 7.3.2.4 Установить на генераторе значение амплитуды сигнала 10 мВ (размах) и включить выход (Output On).
- 7.3.2.5 Измерить установленное значение амплитуды вольтметром и занести результат в таблицу 4.
- 7.3.2.6 Повторить операции по пунктам 7.3.2.4 7.3.2.5 для других значений амплитуды выходного сигнала генератора в соответствии с таблицей 4.
- 7.3.2.7 Повторить операции по пунктам 7.3.2.1 7.3.2.6 для второго канала генератора.

Результаты поверки считать положительными, если показания вольтметра укладываются в пределы, указанные в таблице 4.

Таблица 4

Значение установленной на	Показания воль	ьтметра×2,828	Нижний пре-	Верхний пре- дел
генераторе амплитуды	Канал 1	Канал 2	дел	
10 мВ			7,8 мВ	12,2 мВ
100 мВ			96 мВ	104 мВ
639 мВ			624,22 мВ	653,78 мВ
641 мВ			618,18 мВ	663,82 мВ
1 B			0,97 B	1,03 B
1,6 B			1,558 B	1,642 B
2 B			1,91 B	2,09 B
3 B			2,88 B	3,12 B
5 B			4,82 B	5,18 B
10 B			9,67 B	10,33 B

7.3.3 Определение неравномерности АЧХ сигнала синусоидальной формы относительно частоты 1 кГц

- 7.3.3.1 Подсоединить вольтметр В3-49 с нагрузкой 50 Ом к выходному разъему первого канала на передней панели.
- 7.3.3.2 Установить на генераторе частоту 1 к Γ ц, значение амплитуды сигнала 0,9 Вскз на нагрузке 50 Ом в соответствии с руководством по эксплуатации и включить выход (Output On).
- 7.3.3.3 Измерить установленное значение амплитуды вольтметром и показание вольтметра заносят в таблицу 5 в качестве опорного значения амплитуды на частоте 1 к Γ ц ($A_{O\Pi OP}$).
- 7.3.3.4 Провести измерение установленного значения амплитуды для всех частот генератора в соответствии с таблицей 5.

Определить неравномерность АЧХ ($\Delta_{AЧX}$) по формуле:

 $\Delta_{AYX} = 20 \log(A_{ИЗМ}/A_{ОПОР})$ дБ

и занести результаты вычислений в таблицу 5.

7.3.3.5 Повторить операции по пунктам 7.3.3.1 - 7.3.3.4 для второго канала генератора.

Таблица 5

Значение установ-	Канал	ı 1	Канал	2	Нормированное значение неравномерности,	
ре частоты	Показания	Значение	Показания	Значение	дБ	
	вольтметра, В	$\Delta_{ ext{AYX}}$, д $ ext{Б}$	вольтметра, В	$\Delta_{ ext{AYX}}$		
1 кГц	$A_{O\Pi OP}$		Аопор			
20 Гц						
100 кГц					± 0.15 πF	
1 МГц					± 0,15 дБ	
5 МГц						
10 МГц						
20 МГц						
30 МГц					± 0.2 πF	
40 МГц					± 0,2 дБ	
60 МГц						
70 МГц						
80 МГц					± 0,4 дБ	
100 МГц*						
120 МГц*						
140 МГц**					± 0,8 дБ	
160 МГц**						

Примечание: * - проверка на данных частотах проводится только для моделей АКИП-3413/2 и АКИП-3413/3

Результаты поверки считать положительными, если вычисленные значения неравномерности Δ_{AYX} укладываются в пределы, указанные в последнем столбце таблицы 5.

7.3.4 Определение абсолютной погрешности установки смещения

- 7.3.4.1 Подсоединить вольтметр В7-78/1 с нагрузкой 50 Ом к выходному разъему первого канала на передней панели генератора.
- 7.3.4.2 Установить в соответствии с руководством по эксплуатации на генераторе частоту $10~\mathrm{k}\Gamma$ ц, амплитуду сигнала $1~\mathrm{m}B$ и включить выход (Output On).
- 7.3.4.3 Установить на вольтметре режим измерения постоянного напряжения и обнулить показания.
- 7.3.4.4 Установить на генераторе в соответствии с руководством по эксплуатации значение напряжения постоянного смещения в соответствии с таблицей 6.
- 7.3.4.5 Измерить установленное значение смещения; установленное и измеренное значения смещения занести в таблицу 6.
- 7.3.4.6 Повторить операции по пунктам 7.3.4.1 7.3.3.5 для второго канала генератора.

Таблипа 6

Значение установленного на генера-	Показания	вольтметра	Нижний пре-	Верхний пре-	
торе смещения	Канал 1	Канал 2	дел	дел	
10 мВ			8,9 мВ	11,1 мВ	
-10 мВ			-11,1 мВ	-8,9 мВ	
100 мВ			98 мВ	102 мВ	
-100 мВ			-102 мВ	-98 мВ	
1 B			0,985 B	1,015 B	

^{** -} проверка на данных частотах проводится только для модели АКИП-3413/3

Значение установленного на генера-	Показания	вольтметра	Нижний пре-	Верхний пре-
торе смещения	Канал 1	Канал 2	дел	дел
-1 B			-1,015 B	-0,985 B
4,9 B			4,846 B	4,954 B
-4,9 B		_	-4,954 B	-4,846 B

Результаты поверки считать положительными, если показания вольтметра укладываются в пределы, указанные в таблице 6.

7.3.5 Определение суммарных гармонических искажений на частотах до 20 кГц

- 7.3.5.1 Подсоединить измеритель нелинейных искажений С6-12 с нагрузкой 50 Ом к выходному разъему первого канала на передней панели генератора.
- 7.3.5.2 Установить на генераторе в соответствии с руководством по эксплуатации частоту синусоидального сигнала 200 Γ ц, значение амплитуды сигнала 1 $B_{\text{размах}}$ и включить выход (Output On).
- 7.3.5.3 На измерителе нелинейных искажений выполнить необходимые установки в соответствии с руководством по эксплуатации прибора.
- 7.3.5.4 Измерить коэффициент гармоник выходного сигнала генератора и результат измерений занести в таблицу 7.
- 7.3.5.5 Провести измерения коэффициента гармоник для других частот выходного сигнала в соответствии с таблицей 7.
 - 7.3.5.6 Провести операции по пунктам 7.3.5.1 7.3.5.5 для второго канала генератора.

Таблица 7

Значение установленной на генера-	Показания	CK6-13, %	Нормированное значение	
торе частоты	Канал 1	Канал 2	измеряемой величины, %	
200 Гц				
1 кГц			0,2	
5 кГц			0,2	
20 кГц				

Результаты поверки считать положительными, если результаты измерений не превышают предельного значения, указанного в таблице 7.

7.3.6 Определение уровня гармоник в выходном синусоидальном сигнале по отношению к уровню несущей

- 7.3.6.1 Подсоединить анализатор спектра к выходному разъему первого канала на передней панели генератора.
- 7.3.6.2 Установить в соответствии с руководством по эксплуатации на генераторе частоту синусоидального сигнала $20~\mathrm{k}\Gamma\mathrm{u}$, амплитуду сигнала $0~\mathrm{д}\mathrm{Em}$ и и включить выход (Output On).
- 7.3.6.3 На анализаторе спектра выполнить следующие установки: центральную частоту установить поочередно равной частоте 2-й гармоники и 3-й гармоники, полоса обзора 2 к Γ ц, полоса пропускания 20 Γ ц, опорный уровень 0 д $\overline{\text{Б}}$ м, аттенюатор авто, шкала 10 д $\overline{\text{Б}}$.
- 7.3.6.4 Измерить установленное значение амплитуды несущей с помощью анализатора спектра и занести его в таблицу 8 в качестве опорного значения ($A_{O\Pi OP}$), по отношению к которому будут измеряться уровни гармоник.

- 7.3.6.5 Провести измерения анализатором спектра гармонических составляющих выходного сигнала генератора с помощью маркера маркер с помощью функции «поиск пика» устанавливают на пик гармоники; максимальные значения гармоник заносить в таблицу 8.
- 7.3.6.6 Провести операции по пунктам 7.3.6.3 7.3.6.3 для остальных значений частоты генератора в соответствии с таблицей 8.

7.3.6.7 Провести операции по пунктам 7.3.6.1 – 7.3.6.6 для второго канала генератора. Таблипа 8

Частота ге-	Установки анализатора спектра			Аопор	Макси-	Нормированные
нератора	Центральная частота	Полоса	Полоса		мальное	значения для
		обзора	пропуска-		значение	уровней гармо-
			ния		уровня	ник выходного
					гармоник	сигнала, дБн
20 кГц	40 кГц, 60 кГц	2 кГц	20 Гц			-54
100 кГц	200 кГц, 300 кГц	2 кГц	20 Гц			-54
1 МГц	2 МГц, 3 МГц	2 кГц	20 Гц			-54
5 МГц	10 МГц, 15 МГц	2 кГц	20 Гц			-46
10 МГц	20 МГц, 30 МГц	2 кГц	20 Гц			-46
20 МГц	40 МГц, 60 МГц	2 кГц	20 Гц			-36
40 МГц	80 МГц, 120 МГц	2 кГц	20 Гц			-36
60 МГц	120 МГц, 180 МГц	2 кГц	20 Гц			-36
80 МГц	160 МГц, 240 МГц	2 кГц	20 Гц			-36
100 МГц*	200 МГц, 300 МГц	2 кГц	20 Гц			-36
120 МГц*	240 МГц, 360 МГц	2 кГц	20 Гц			-26
140 МГц**	280 МГц, 420 МГц	2 кГц	20 Гц			-26
160 МГц**	320 МГц, 480 МГц	2 кГц	20 Гц			-26

Примечание: * - проверка на данных частотах проводится только для моделей $\ AKU\Pi$ -3413/2 и $\ AKU\Pi$ -3413/3

** - проверка на данных частотах проводится только для модели АКИП-3413/3

Результаты поверки считать положительными, если уровни гармоник не превышают значений, указанных в таблице 7.

7.3.7 Определение длительности фронта и среза сигналов прямоугольной формы.

- 7.3.7.1 Подсоединить осциллограф к выходному разъему первого канала на передней панели генератора.
 - 7.3.7.2 Включить нагрузку канала осциллографа 50 Ом.
- 7.3.7.3Установить на генераторе в соответствии с руководством по эксплуатации прямоугольную форму.
- 7.3.7.4 Установить на генераторе частоту сигнала 1 к Γ ц, значение амплитуды сигнала 1,2 В.
- 7.3.7.5 Установить на осциллографе коэффициент отклонения 200 мВ/дел и расположить сигнал в центре экрана. Выбрать режим измерения времени нарастания (среза) на уровне 10-90 %. При измерении времени нарастания, на осциллографе установить синхронизацию по нарастающему фронту. При измерении времени среза, на осциллографе установить синхронизацию по срезу. Установить на осциллографе режим отображения статистики измерения.
- 7.3.7.6 После окончания набора статистики 1000 измерений на осциллографе, произвести считывание результата измерения длительности фронта и среза импульса на уровне 10-90 % и занести результаты измерений в таблицу 9
 - 7.3.7.7 Повторить операции по пунктам 7.3.7.1–7.3.7.6 для второго канала генератора.

Таблица 9

Форма сигнала	Измеренная длительн	Нормированное	значение	
	пульс	са, нс	длительности фронт	га/среза
	Канал 1 Канал 2			
Прямоугольная			≤ 8 HC	

Результаты поверки считать положительными, если полученные значения длительностей фронта/среза не превышают нормированного значения, указанного в таблице 9.

7.3.8 Определение абсолютной погрешности установки времени нарастания и среза импульсных сигналов.

- 7.3.8.1 Подсоединить осциллограф к выходному разъему первого канала на передней панели генератора.
 - 7.3.8.2 Включить нагрузку канала осциллографа 50 Ом.
- 7.3.8.3 Установить на генераторе в соответствии с руководством по эксплуатации импульсную форму сигнала.
- 7.3.8.4 Установить на генераторе режим импульсного сигнала, частоту сигнала 1 к Γ ц, значение амплитуды сигнала 1,2 B.
- 7.3.8.5 Значение скважности установить 50 %. Период повторения сигнала установить в 3 раза больше времени нарастания/среза в соответствии с таблицей 10. В настройках параметров импульсного сигнала выбрать параметр «Время нарастания/среза (Rise/Fall)» и установить значения в соответствии с таблицей 10.
- 7.3.8.5 Установить на осциллографе коэффициент отклонения 200мВ/дел и расположить сигнал в центре экрана. Выбрать режим измерения времени нарастания (среза) на уровне 10 90 %. При измерении времени нарастания, на осциллографе установить синхронизацию по срезу. При измерении времени среза, на осциллографе установить синхронизацию по нарастающему фронту. Установить на осциллографе усреднение 100 раз, а для значения длительности фронта/среза 1 с установить усреднение 10 раз.
- 7.3.8.6 После окончания усреднения на осциллографе, произвести считывание результата измерения длительности фронта и среза каждого импульса на уровне 10-90~% и занести результаты измерений в таблицу 10.
 - 7.3.8.7 Повторить операции по п/п 7.3.8.1 7.3.8.6 для другого канала генератора.

Таблица 10

тионнци			
Форма сиг-	Значение установленной на	Измеренная длитель-	Нормированное значе-
нала	генераторе длительности	ность фронта/среза	ние длительности фрон-
	фронта/среза	импульса, нс	та/среза
Импульсная	6 нс		$(6 \pm 2,06)$ нс
	60 мкс		$(60 \pm 0,6)$ мкс
	60 мс		$(60 \pm 0.6) \ { m Mc}$
	1 c		(1 ± 0.01) c

Результаты поверки считать положительными, если полученные значения длительностей фронта/среза импульсов не превышают нормированного значения, указанного в таблице 10.

8 Оформление результатов поверки

8.1 Результаты измерений, полученные в процессе поверки, заносят в протокол произвольной формы.

- 8.2 При положительных результатах поверки на прибор выдается "Свидетельство о поверке" установленного образца.
- 8.3 При отрицательных результатах поверки на прибор выдается "Извещение о непригодности" установленного образца с указанием причин непригодности.