

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора ФБУ «Ростест-Москва»

Е.В. Морин

«28» февраля 2017 г.

Государственная система обеспечения единства измерений

ИЗМЕРИТЕЛЬ DE-VX 4115S

Методика поверки РТ-МП-4127-442-2017 Настоящая методика распространяется на измеритель DE-VX 4115S (далее – измеритель) и устанавливает методы и средства их первичной и периодической поверок.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении первичной и периодической поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

	Номер пункта МП	Проведение операции при		
Наименование операции		первичной	периодической	
		поверке	поверке	
1 Внешний осмотр	5.1	Да	Да	
2 Опробование	5.2.1	Да	Да	
3 Определение погрешности измерений температуры и давления	5.3	Да	Да	

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений, указанные в таблице 2.

Таблица 2

Номер пункта	Наименование и тип (условное обозначение) основного или
методики	вспомогательного средства поверки, обозначение нормативного документа,
поверки	регламентирующего технические требования, и (или) метрологические и
	основные технические характеристики средства поверки
5.2	Компаратор-калибратор универсальный КМ300КТ, диапазон 0 – 100 мВ, 3
5.3	разряд, диапазон 0 – 100 мА, 2 разряд

Примечания:

- 1 Все средства измерений, применяемые при поверке, должны иметь действующие свидетельства о поверке.
- 2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки необходимо соблюдать:

- требования безопасности, которые предусматривают «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» ПОТ РМ-016-2001;
- указания по технике безопасности, приведенные в руководстве по эксплуатации на эталонные средства измерений и средства испытаний;
- указания по технике безопасности, приведенные в руководстве по эксплуатации измерителя.

К проведению поверки допускаются лица, аттестованные на право проведения поверки данного вида средств измерений, ознакомленные с руководством по эксплуатации измерителя и прошедшие инструктаж по технике безопасности.

4 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °C

- от плюс 15 до плюс 25;
- относительная влажность окружающего воздуха, %

от 30 до 80;

– атмосферное давление, кПа

от 86 до 106,7.

5 ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Внешний осмотр

При внешнем осмотре проверяется:

- соответствие маркировки измерителя идентификационным данным, приведенным на рисунке 3 описания типа;
- отсутствие внешних повреждений поверяемого измерителя, которые могут повлиять на его метрологические характеристики.

Измеритель, не отвечающий перечисленным выше требованиям, дальнейшей поверке не подлежит.

5.2 Опробование

Включить прибор, убедиться, что экран измерителя не поврежден, «кнопки» и индикация измерителя функционируют.

Измеритель, не отвечающий перечисленным выше требованиям, дальнейшей поверке не подлежит.

- 5.3 Определение погрешности измерений температуры и давления
- 5.3.1 Определение погрешности измерений температуры

В настройках измерителя отключить функцию компенсации температуры свободных концов.

Подключить последовательно к каждому входу измерений температуры калибратор КМ300КТ.

Для каждого входа определить погрешность измерений температуры (сигналов термопар по ГОСТ Р 8.585-2001) в пяти точках диапазона измерений, включая две близкие к крайним (таблицы 3-4), последовательно задавая их значения на калибраторе КМ300КТ.

Таблица 3 – Рекомендуемые точки определения погрешности измерений температуры

термопарами типа S

Drog overse II vD		Соотрототрую ОС	Диапазон допускаемых значений, °С	
Вход, сигнал	U, MB	Соответствие, °С	Крайнее нижнее	Крайнее верхнее
Входы А и Б сигнал термопары типа S 0,011 2,786 6,275 10,168 14,348	0,011	2	0,6	3,4
	2,786	350	348,6	351,4
	6,275	700	698,6	701,4
	10,168	1050	1048,6	1051,4
	14,348	1398	1396,6	1399,4

Таблица 4 – Рекомендуемые точки определения погрешности измерений температуры

термопарами типа N

Druge grown II veD	Coomercano	Диапазон допускаемых значений, °С		
Бход, сигнал	Вход, сигнал U, мВ	Соответствие, °С	Крайнее нижнее	Крайнее верхнее
D D T 0,	0,052	2	0,8	1,2
Входы В, ГиД	9,341	300	298,8	301,2
сигнал	20,613	600	598,8	601,2
термопары – типа N –	32,371	900	898,8	901,2
	43,772	1198	1196,8	1199,2

В случае, если при поверке используются контрольные точки, отличные от приведенных в таблицах 3-4, для каналов измерений температуры (вход A, Б, B, Γ Д) вычислить приведенную погрешность измерений по формуле 1:

$$\gamma = \frac{t_{u3M} - t_p}{D} \cdot 100,\% \tag{1}$$

где $t_{uзм}$ – показания измерителя, соответствующие заданным значениям температуры, °С;

 t_p – заданное значение температуры, °C;

D – диапазон измерений температуры, °С.

Результат считается положительным, если измеренные значения соответствуют диапазонам допускаемых значений, указанным в таблицах 3-4 или приведенная погрешность, рассчитанная по формуле 1, не превышает ± 0.1 %.

5.3.2 Определение погрешности измерений давления

Подключать последовательно к каждому входу измерений давления калибратор КМ300КТ.

А) Для каждого входа (Е, Ж, Д) определить погрешность измерений давления в пяти точках диапазона измерений, включая две вблизи крайних (таблицы 5-6), последовательно задавая соответствующие значения напряжения (U, B) на калибраторе КМ300КТ.

Таблица 5 – Рекомендуемые точки определения погрешности измерений давления

			Диапазон допускаемых значений, мБар	
Вход, сигнал	U, B	Соответствие, мБар	Крайнее нижнее	Крайнее верхнее
	2	1.10-9	9,8·10 ⁻¹⁰	1,02·10 ⁻⁹
Входы Е и Ж	4	5,62·10 ⁻⁸	5,51·10 ⁻⁸	5,73·10 ⁻⁸
сигнал	6	3,16·10 ⁻⁶	3,10.10-6	3,22·10 ⁻⁶
вакуумметра	8	1,78·10 ⁻⁴	1,74.10-4	1,82·10 ⁻⁴
	10	1.10-2	9,8·10 ⁻³	1,02·10 ⁻²

Таблица 6 – Рекомендуемые точки определения погрешности измерений давления

D II	TT D	Соответствие, мБар	Диапазон допускаемых значений, мБар	
Вход, сигнал	U, B		Крайнее нижнее	Крайнее верхнее
	2	1.10-4	9,8·10 ⁻⁵	1,02·10 ⁻⁴
Вход З	3	1.10-3	9,8·10 ⁻⁴	1,02·10 ⁻³
сигнал	5	0.1	9,8·10 ⁻²	1,02·10 ⁻¹
вакуумметра	7	10	9,8	10,2
ſ	9	1000	980	1020

Пересчет сигналов от вакуумметров из напряжения (U, B) в давление (P, мбар) выполняется по формуле 2:

$$P = P_{\min} \cdot 10$$

$$(U - U_{\min}) \cdot \log \left(\frac{P_{\max}}{V_{\min}} \right)$$

$$(2)$$

где P_{min} – значение нижней границы диапазона измерений давления, мбар;

 P_{max} – значение нижней границы диапазона измерений давления, мбар;

 U_{min} — значение напряжения, соответствующее нижней границе диапазона измерений давления, В;

 U_{max} — значение напряжения, соответствующее верхней границе диапазона измерений давления, В.

В случае, если при поверке используются контрольные точки, отличные от приведенных в таблицах 5-6, для каналов измерений давления (вход Е, Ж, 3) вычислить относительную погрешность измерений по формуле 3:

$$\delta = \frac{P_{u_{3M}} - P_p}{P_{u_{3M}}} \cdot 100,\% \tag{3}$$

где $P_{u_{3M}}$ – показания измерителя, соответствующие заданным значениям давления, мбар; P_{p} – заданное значение давления, мбар.

Результат считается положительным, если измеренные значения соответствуют диапазонам допускаемых значений, указанных в таблицах 5-6 или относительная погрешность не превышает ± 2 %.

Б) Для входа И определить погрешность измерений давления в пяти точках диапазона измерений, включая две крайние (таблица 7), последовательно задавая соответствующие значения силы тока (I, мA) на калибраторе КМ300КТ.

Таблица 7 – Рекомендуемые точки определения погрешность измерений сигналов от

преобразователей лавления

Dyor overvor	Ι Δ	Соответствие, мБар	Диапазон допускаемых значений, мБар	
Вход, сигнал	I, MA		Крайнее нижнее	Крайнее верхнее
	4	0	-6	6
Вход И	8	1500	1494	1506
сигнал	12	3000	2994	3006
манометра	16	4500	4594	4506
	20	6000	5994	6006

Пересчет силы постоянного тока (І, мА) в давление (Р, мбар) выполняется по линейному закону.

В случае, если при поверке используются контрольные точки, отличные от приведенных в таблице 7, для канала измерений давления (И) вычислить приведенную погрешность измерений по формуле 3:

$$\gamma = \frac{P_{usm} - P_p}{D} \cdot 100,\% \tag{3}$$

где $P_{u_{3M}}$ – показания измерителя, соответствующие заданным значениям давления, °C;

 P_p – заданное значение давления, °C;

D – диапазон измерений давления, °С.

Результат считается положительным, если измеренные значения соответствуют диапазонам допускаемых значений, указанных в таблице 7 или приведенная погрешность, рассчитанная по формуле 3, не превышает ± 0.1 %.

6 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Измеритель прошедший поверку с положительным результатом, признается годным и допускается к применению.

Результаты поверки удостоверяются свидетельством о поверке, заверяемым подписью поверителя и знаком поверки.

Знак поверки наносится на свидетельство о поверке.

При отрицательных результатах поверки оформляется извещение о непригодности.

Главный специалист по метрологии лаборатории 442

Р.А. Горбунов

Д.А. Подобрянский