

ПРЕОБРАЗОВАТЕЛИ НАПРЯЖЕНИЯ ИЗМЕРИТЕЛЬНЫЕ Е14

Методика поверки

4221-008-42885515 МП

Содержание

1 Введение	3
2 Условия проведения поверки	4
3 Операции поверки	4
4 Средства поверки	5
5 Проведение поверки	5
6 Оформление результатов поверки	11

1 ВВЕДЕНИЕ

1.1 Настоящая методика поверки предназначена для использования при первичной и периодической поверке по ПР.50.2.006-94 и устанавливает объем, средства и методы первичной и периодической поверки преобразователей напряжения измерительных Е14 (далее – Е14) в соответствии с РМГ 51-2002 «Рекомендации по межгосударственной стандартизации. Государственная система обеспечения единства измерений. Документы на методики поверки средств измерений. Основные положения» и МИ 1202-86 «Методические указания. Государственная система обеспечения единства измерений. Приборы и преобразователи измерительные напряжения, тока, сопротивления цифровые. Общие требования к методике поверки».

Преобразователи напряжения измерительные Е14 предназначены для измерения напряжения постоянного и переменного тока, а также для ввода, вывода и обработки аналоговой и цифровой информации в измерительных устройствах и системах на базе персональных компьютеров.

Основная область применения – в добывающей и энергетической отраслях, на предприятиях машиностроения и связи, в научно-исследовательских и учебных учреждениях.

Е14 обеспечивают измерение напряжения постоянного тока и среднеквадратического значения напряжения переменного тока в одном или нескольких измерительных каналах (максимальное количество каналов – 16 или 32 в зависимости от схемы подключения) с использованием 14-разрядного аналого-цифрового преобразователя (далее – АЦП) и многоканального коммутатора входных сигналов. Управление работой и питание преобразователей напряжения измерительных Е14 осуществляются от персонального компьютера, подключение к которому обеспечивается посредством стандартного интерфейса USB.

Е14 выпускаются в модификациях согласно таблице 1.

Таблица 1

Монификанца	Максимальная частота	Наличие цифрового	Наличие
Модификация	преобразования АЦП, кГц	бразования АЦП, кГц сигнального процессора	
E14-140	100	Нет	Нет
E14-440	400	Есть	Нет
E14-140D	100	Нет	Есть
E14-440D 400 Есть		Есть	

^{*} ЦАП – двухканальный преобразователь цифрового кода в напряжение

Межповерочный интервал – один год.

2 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

- 2.1 При проведении поверки должны соблюдаться нормальные условия применения:
 - температура окружающего воздуха (20±5) °С;
 - относительная влажность воздуха от 30 до 80 %;
 - атмосферное давление от 630 до 795 мм рт.ст.
- 2.2 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
 - провести технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75;
 - подготовить к работе средства измерений, используемые при поверке, в соответствии с руководствами по их эксплуатации (все средства измерений должны быть исправны и поверены).

Общие требования безопасности при проведении поверки – согласно ГОСТ 12.3.019-80.

3 ОПЕРАЦИИ ПОВЕРКИ

3.1 При проведении поверки выполняют операции, указанные в таблице 2.

Таблица 2

	Номер пункта	Необходимость выполнения	
Наименование операции поверки	методики поверки	при первич- ной поверке	при периодиче- ской поверке
Внешний осмотр	5.1.1	Да	Да
Опробование	5.2.1	Да	Да
Определение систематической составляющей основной приведенной погрешности измерения напряжения постоянного тока	5.3.1	Да	Да
Определение среднего квадратического отклонения случайной составляющей основной приведенной погрешности измерения напряжения постоянного тока	5.3.2	Да	Да
Определение основной приведенной погрешности измерения среднеквадратического значения напряжения переменного тока	5.3.3	Да	Да
Определение основной приведенной погрешности воспроизведения напряжения постоянного тока	5.3.4	Да	Да

4 СРЕДСТВА ПОВЕРКИ

4.1 Перечень средств измерений, используемых при поверке, приведен в таблице 3.

Таблица 3

	Наименование, обозначение	Тип	Требуемые характеристики
1.	Калибратор универсаль- ный	H4-7	Диапазон воспроизведения и измерения напряжения от 10 мкВ до 10 В; приведенная погрешность ± 0.01 %
2.	Термометр ртутный ГОСТ 215-73	ТЛ-18	Диапазон от 0 до 50 °C; погрешность ±1 °C
3.	Барометр-анероид специальный ТУ 25-04-1513-79	БАММ-1	Диапазон от 80 до 106 кПа; погрешность ±200 Па
4.	Психрометр аспирационный электрический ТУ 25-1607.054-85	M-34	Диапазон от 10 до 100 %; погрешность ± 1 %

Примечание: Допускается использование других средств измерений, обеспечивающих измерение соответствующих параметров с требуемой точностью.

5 ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Внешний осмотр

5.1.1 При проведении внешнего осмотра проверяют маркировку и наличие необходимых надписей на наружных панелях E14, а также комплектность поставки. Проверяют отсутствие механических повреждений, способных повлиять на работоспособность.

Результат внешнего осмотра считают положительным, если маркировка, надписи на наружных панелях и комплектность соответствуют эксплуатационной документации и отсутствуют механические повреждения, способные повлиять на работоспособность Е14.

5.2 Опробование

- 5.2.1 Опробование проводят в следующей последовательности:
 - 1) разместить E14 и калибратор универсальный H4-7 (далее калибратор H4-7) на удобном для проведения работ месте;
 - 2) подключить E14 к компьютеру с помощью кабеля USB из комплекта E14;
 - 3) подключить выход калибратора Н4-7 между параллельно соединенными инвертирующими и неинвертирующими входами Е14;
 - 4) прогреть приборы согласно эксплуатационной документации на них;
 - 5) загрузить в компьютер программу «V-Metr» (далее программа);
 - 6) установить частоту преобразования АЦП 20 кГц в соответствующем окне программы и нажать кнопку «Set Rate»;
 - 7) нажать кнопку «1 ch» и выбрать канал 1 в окне программы;
 - 8) подать на вход E14 с калибратора H4-7 значения напряжения постоянного тока согласно таблице 4, поочередно устанавливая поддиапазоны измерения 10; 2,5; 0,6; 0,15 В нажатием соответствующих кнопок в окне программы, и убедиться, что в окне «DC» программы отображаются соответствующие значения напряжения.

Таблица 4

Поддиапазон измерения, В	Устанавливаемые значения напряжения постоянного тока на выходе калибратора Н4-7, мВ
10	9900; 5000; 2000; –2000; –5000; –9900
2,5	2475; 1500; 500; -500; -1500; -2475
0,6	600; 300; 120; -120; -300; -600
0,15	150; 75; 3; -3; -75; -150

Результат опробования считают положительным, если показания в окне «DC» программы соответствуют значениям напряжения, устанавливаемым на выходе калибратора Н4-7. При наличии грубых отклонений Е14 бракуют.

- 5.3 Определение метрологических характеристик
- 5.3.1 Определение систематической составляющей основной приведенной погрешности измерения напряжения постоянного тока осуществляют с использованием калибратора Н4-7 в следующей последовательности:
 - 1) выполнить операции 2) 6) по п.5.2.1;
 - 2) нажать кнопку «16 ch» в окне программы;

3) подать на вход E14 с калибратора H4-7 значения напряжения постоянного тока согласно таблице 5, поочередно устанавливая поддиапазоны измерения 10; 2,5; 0,6; 0,15 В нажатием соответствующих кнопок в окне программы, и зафиксировать соответствующие показания в окне «DC» программы для каждого из 16 измерительных каналов;

Таблица 5

Поддиапазон измерения, В	Устанавливаемые значения напряжения постоянного тока на выходе калибратора Н4-7, мВ
10	9900; 7000; 4000; 2000; 500; –500; –2000; –4000; –7000; –9900
2,5	2475; 1750; 1000; 500; 150; -150; -500; -1000; -1750; -2475
0,6	600; 420; 240; 120; 30; -30; -120; -240; -420; -600
0,15	150; 105; 60; 30; 10; 0,05; -0,05; -10; -30; -60; -105; -150

4) рассчитать для каждого установленного согласно таблице 5 напряжения на выходе H4-7 и каждого измерительного канала E14 систематическую составляющую основной приведенной погрешности измерения напряжения постоянного тока γ_{oS} в процентах по формуле:

$$\gamma_{oS} = \frac{U_{u_{3M}} - U_{o\delta p}}{U_{v}} \times 100, \tag{1}$$

где $U_{u_{3M}}$ – показание в окне «DC», мВ;

 $U_{oбp}$ – показание калибратора H4-7, мВ;

 U_{κ} – конечное значение установленного поддиапазона измерений, мВ.

Результат определения систематической составляющей основной приведенной погрешности измерения напряжения постоянного тока γ_{oS} считают положительным, если полученные значения γ_{oS} находятся в пределах ± 0.05 % в поддиапазонах 2,5 В и 10 В, ± 0.1 % в поддиапазоне 0,6 В и ± 0.5 % в поддиапазоне 0,15 В.

- 5.3.2 Определение среднего квадратического отклонения случайной составляющей основной приведенной погрешности измерения напряжения постоянного тока проводят в следующей последовательности:
 - 1) подключить к цепи «Общий» E14 инвертирующие входы E14 непосредственно, а неинвертирующие через резисторы сопротивлением (5±0,5) кОм;
 - 2) выполнить операции 2), 4) 6) по п.5.2.1;
 - 3) «Нажать кнопку «16 ch» в окне программы»;
 - 4) поочередно установить поддиапазоны измерения 10; 2,5; 0,6; 0,15 В в окне программы нажатием соответствующих кнопок и зафиксировать соответствующие показания в окне «АС» программы для каждого из 16 измерительных каналов;

5) рассчитать среднее квадратическое отклонение случайной составляющей основной приведенной погрешности измерения напряжения постоянного тока σ_{dc} для каждого зафиксированного показания в процентах по формуле:

$$\sigma_{dc} = 100 \times \frac{U_a}{U_{\kappa}} \times \sqrt{\frac{N}{N-1}} \,, \tag{2}$$

где U_a —показание, зафиксированное в окне «AC», мВ;

 U_{κ} – конечное значение установленного поддиапазона измерений, мВ;

N -количество отсчетов АЦП;

N рассчитывается по формуле:

$$N = \frac{T_{u_{3M}} \times f_{np}}{M} \,, \tag{3}$$

где $T_{u_{3M}}$ – время измерения напряжения U_a , $T_{u_{3M}}$ = 1 с;

 f_{np} – частота преобразования АЦП, f_{np} = 20 кГц;

M – количество опрашиваемых измерительных каналов, M = 16;

Результат определения среднего квадратического отклонения случайной составляющей основной приведенной погрешности измерения напряжения постоянного тока σ_{dc} считают положительным, если полученные значения σ_{dc} не более 0,05 % в поддиапазонах 2,5 В и 10 В, 0,1 % в поддиапазоне 0,6 В и 0,5 % в поддиапазоне 0,15 В.

- 5.3.3 Определение основной приведенной погрешности измерения среднеквадратического значения напряжения переменного тока проводят с использованием калибратора Н4-7 в следующей последовательности:
 - 1) выполнить операции 2) -5) по п.5.2.1;
 - 2) нажать кнопку «1 ch» в окне программы;
 - 3) установить поочередно поддиапазоны измерения 10; 2,5; 0,6; 0,15 В, частоту преобразования АЦП 20; 100; 400 кГц в окне программы и подать на вход Е14 с калибратора Н4-7 значения напряжения переменного тока согласно таблице 6 с частотой согласно таблице 7; зафиксировать соответствующие показания в окне «АС» программы;

Таблица 6

Поддиапазон измерения, В	Действующие значения напряжения на выходе калибратора Н4-7, мВ	
10	350; 1400; 2800; 4900; 6700	
2,5	85; 350; 700; 1200; 1600	
0,6	20; 85; 170; 290; 400	
0,15	0,5; 5; 22; 45; 70; 100	

Таблица 7

Частота преобразования АЦП, кГц	Частота входного сигнала (частота напряжения на выходе калибратора Н4-7), кГц	
20	0,1; 9	
100	1; 49	
400	1; 199	
(только для модифика-		
'		
	преобразования АЦП, кГц 20 100 400	

Таблица 8

Режим работы Е14	Частота преобразования АЦП, кГц	Частота входного сигнала (частота напряжения на выходе калибратора Н4-7), кГц
Многоканальный	20	0,02; 0,5
	100	0,02; 3
	400	0,02; 12
	(только для модификаций E14-440 и E14-440D)	

- 4) нажать кнопку «16 ch» в окне программы;
- 5) для каждого из 16 измерительных каналов установить поочередно поддиапазоны измерения 10; 2,5; 0,6; 0,15 В, частоту преобразования АЦП 20; 100; 400 кГц в окне программы и подать на вход Е14 с калибратора Н4-7 значения напряжения переменного тока согласно таблице 6 с частотой согласно таблице 8; зафиксировать соответствующие показания в окне «АС» программы
- 6) рассчитать для всех установленных в операциях 3), 5) значений напряжения на выходе H4-7, частот преобразования АЦП и всех измерительных каналов E14 основную приведенную погрешность измерения среднеквадратического значения напряжения переменного тока γ_{oa} в процентах по формуле:

$$\gamma_{oa} = \frac{U_{u_{3Ma}} - U_{o\delta pa}}{U_{\kappa}} \times 100, \tag{4}$$

где $U_{u_{3Ma}}$ – показание в окне «АС», мВ;

 $U_{oбpa}$ – показание калибратора H4-7, мВ;

 U_{κ} – конечное значение установленного поддиапазона измерений, мВ.

Результат определения основной приведенной погрешности измерения среднеквадратического значения напряжения переменного тока γ_{oa} считают положительным, если полученные значения γ_{oa} находятся в пределах, указанных в таблице 9.

Таблица 9

	Пределы основной приведенной погрешности измерения среднеквадратического значения напряжения переменного тока, %			
Поддиапазон измерения, В	Изстота прасб	Частота преобразования АЦП 100 кГц		Частота преобразо-
	Частота преобразования АЦП 20 кГц	для модифика- ций Е14-440 и Е14-440D	для модифика- ций Е14-140 и Е14-140D	вания АЦП 400 кГц для модификаций E14-440 и E14-440D
10				±5,0
2,5	±0,15	±1,0 ±	±3,0	±2,0
0,6				±10
0,15	±0,5	±10		_

- 5.3.4 Определение основной приведенной погрешности воспроизведения напряжения постоянного тока проводят только для модификаций E14-140D и E14-440D в следующей последовательности:
 - 1) подключить первый выход ЦАП Е14 к входу калибратора Н4-7;
 - 2) выполнить операции 2), 4), 5) по п.5.2.1;
 - 3) последовательно установить в поле «DAC 1» окна программы значения напряжений –4750; –4000; –2000; –1000; –250; –0,5; 0,5; 250; 1000; 2000; 4000; 4750 мВ нажатием кнопки «Set» после ввода очередного значения напряжения и зафиксировать соответствующие показания калибратора H4-7;
 - 4) подключить второй выход ЦАП Е14 к входу калибратора Н4-7;
 - 5) последовательно установить в поле «DAC 2» окна программы значения напряжений –4750; –4000; –2000; –1000; –250; –0,5; 0,5; 250; 1000; 2000; 4000; 4750 мВ нажатием кнопки «Set» после ввода очередного значения напряжения и зафиксировать соответствующие показания калибратора H4-7;

6) рассчитать основную приведенную погрешность воспроизведения напряжения γ_{og} в процентах по формуле:

$$\gamma_{og} = \frac{U_{u_{3Mg}} - U_{o\tilde{o}pg}}{U_{\kappa g}} \times 100, \tag{5}$$

где $U_{u_{3Mg}}$ – установленное значение напряжения на выходе ЦАП, мВ;

 $U_{oбpg}$ – показание калибратора H4-7, мВ;

 $U_{\kappa g}$ — конечное значение установленного поддиапазона измерений, $U_{\kappa g} = 5000 \; \mathrm{MB}.$

Результат определения основной приведенной погрешности воспроизведения напряжения постоянного тока γ_{og} считают положительным, если полученные значения основной приведенной погрешности воспроизведения напряжения находятся в пределах ± 0.3 %.

- 5.4 Результат поверки
- 5.4.1 Результат поверки считают положительным, если получены положительные результаты при выполнении всех операций поверки (подразделы 5.1 5.3).

6 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 6.1 При положительном результате поверки на паспорт Е14 наносится поверительное клеймо или выдается «Свидетельство о поверке».
- 6.2 При отрицательном результате поверки Е14 не допускается к дальнейшему применению, поверительное клеймо гасится, "Свидетельство о поверке" аннулируется, выписывается "Извещение о непригодности" или делается соответствующая запись в паспорте Е14.