УТВЕРЖДАЮ

Преобразователи измерительные VM, VM-Exi

МЕТОДИКА ПОВЕРКИ

1p.63888-16

1 Введение

Настоящая методика распространяется на преобразователей измерительных VM, VM-Exi (далее по тексту — ΠU или преобразователи), изготавливаемые OOO H ΠO «Вакууммаш», Γ . Ижевск, и устанавливает методы и средства их первичной и периодической поверок.

Интервал между поверками – 2 года.

2 Операции поверки

При проведении первичной и периодической поверки преобразователей исполнений VM-Exi-102-1-G, VM-Exi-102-2-G, VM-101-1-G, VM101-2-G, VM-100-1, VM-100-2 должны выполняться операции, указанные в таблице 2.1

Таблица 2.1

Наименование операции	Haysan	Проведение операции при		
	Номер пункта МП	первичной	периодичес-	
_	пункта мпт	поверке	кой поверке	
1 Внешний осмотр	6.1	Да	Да	
2 Опробование	6.2	Да	Да	
3 Определение основной приведенной погрешности	6.3	Да	Да	

При проведении первичной и периодической поверки преобразователей исполнений VM-Exi-105-3-G-HART, VM-Exi-105-4-G-HART, VM-104-3-G-HART, VM-104-4-G-HART, VM-103-3-HART, VM-103-4-HART должны выполняться операции, указанные в таблице 2.2 Таблица 2.2

		T		
Наименование операции	Horson	Проведение операции при		
	Номер	первичной	периодичес-	
•	пункта МП	поверке	кой поверке	
1 Внешний осмотр	7.1	Да	Да	
2 Опробование	7.2	Да	Да	
3 Определение основной приведенной	7.3	Да	Да	
погрешности	7.5	74	_ μα	

3 Средства поверки

При проведении поверки применяют средства измерений, указанные в таблице 3.1 Таблица 3.1

Гаолица 3.1		
Hermonopowno u muu	Основная	
Наименование и тип	погрешность	
Мера электрического сопротивления постоянного	KT 0,005	
тока многозначная МС 3070-3		
Компаратор-калибратор универсальный КМ300Р	±0,0005 %	
Калибратор многофункциональный и коммуникатор	Госреестр № 52489-13	
BEAMEX MC6 (-R)		
Калибратор-измеритель унифицированных сигналов	$\pm (7.10^{-5} \cdot U + 3)$ мкВ	
эталонный	$\pm (10^{-4} \cdot I + 1)$ мкА $\pm 0,025$ Ом	
ИКСУ-260L		
Источник питания постоянного тока Б5-71	$\pm (0,001 \text{ Uyct} \pm 0,002) \text{B}$	
Гигрометр психрометрический ВИТ-1	±7 %	
Термометр лабораторный электронный ЛТ-300	диапазон измерений температуры: от	
	минус 50 до плюс 300 °C, ПГ: ±0,05 °C	
	(в диапазоне от минус 50 до плюс	
	199,99 °C), ±0,2 °С (в диапазоне от	
	плюс 200 до плюс 300 °C)	

Наименование и тип	Основная погрешность
Барометр БАММ-1	±0,2 κΠa
Модем компьютерный USB – HART, ПО	
Компьютер персональный, ПО	Thingalaulio P

Примечание - допускается применение других средств измерений разрешенных к применению в Российской Федерации с метрологическими характеристиками, удовлетворяющими следующему критерию: $\Delta \sqrt[4]{\Delta_{\pi}} \le 1/3$, где: Δ_{3} – погрешность эталонных СИ, Δ_{π} – погрешность поверяемого ПИ.

4 Требования безопасности

При проведении поверки необходимо соблюдать:

- требования безопасности, которые предусматривают «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» ПОТ РМ-016-2001;
- указания по технике безопасности, приведенные в эксплуатационной документации на эталонные средства измерений и средства испытаний;
- указания по технике безопасности, приведенные в руководстве по эксплуатации преобразователей.

К проведению поверки допускаются лица, аттестованные на право проведения поверки данного вида средств измерений, ознакомленные с руководством по эксплуатации преобразователей и прошедшие инструктаж по технике безопасности.

5 Условия поверки и подготовка к ней

- 5.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха, °C

20±5;

- относительная влажность окружающего воздуха, %, не более

80;

– атмосферное давление, кПа

от 86 до 106,7;

- внешние электрические и магнитные поля, удары и вибрации, влияющие на работу ПИ и средств поверки, должны отсутствовать.
 - 5.2 ПИ выдерживают в условиях, установленных в п.5.1, в течение 2 часов.
- 5.3 Средства поверки и оборудование подготавливают к работе в соответствии с эксплуатационной документацией.

6 Проведение поверки преобразователей измерительных исполнений VM-Exi-102-1-G, VM-Exi-102-2-G, VM-101-1-G, VM101-2-G, VM-100-1, VM-100-2

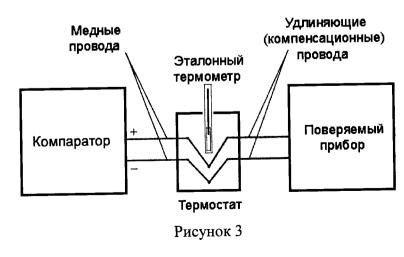
6.1 Внешний осмотр

- 6.1.1. При внешнем осмотре ПИ проверить отсутствие механических повреждений.
- 6.1..2 Проверяют соответствие маркировки ПИ паспортным данным.

6.2.Опробование

- 6.2.1 Собрать схему измерений, приведенную на рисунке 1 для ТС, сопротивлений или на рисунке 2 – для ТП и напряжения постоянного тока.
- 6.2.2 Подключить выход ПИ 4-20мА к калибратору ИКСУ-260L или BEAMEX МС6 (-R). В режиме работы с ТП и датчиками напряжения, в качестве источника сигнала использовать компаратор-калибратор КМ300Р. В режимах работы с ТС и датчиками сопротивления, в качестве источника сигнала использовать меры электрического сопротивления МС3070.
- 6.2.3 Установить значение соответствующее настроенному на ПИ типу входного сигнала и лежащего в диапазоне измерений ПИ в соответствии с Приложением А.
 - 6.2.4 Фиксировать значения выходного тока на калибраторе ИКСУ-260L или BEAMEX

MC6 (-R).


6.2.5 ПИ считается пригодным к дальнейшей поверке, если на дисплее калибратора ИКСУ-260L индицируется значение выходного сигнала «ток 4-20 мА».

6.3 Определение основной приведенной погрешности

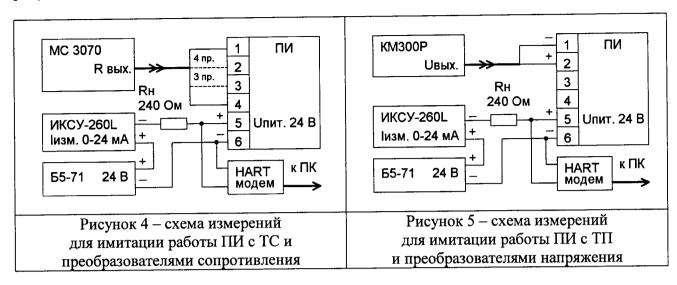
- 6.3.1 При первичной и периодической поверке количество поверяемых типов НСХ и входных сигналов преобразователя согласовывают с пользователем. Допускается проводить поверку в диапазоне измерений, согласованным с пользователем, но лежащим внутри полного диапазона измерений ПИ. При этом делают соответствующую запись в паспорте и (или) в свидетельстве о поверке.
- 6.3.2 Определение основной погрешности проводить по пяти точкам: 5 ± 5 , 25 ± 5 , 50 ± 5 , 75±5 и 100±5 % диапазона.
- 6.3.3 Собрать схему измерений, приведенную на рисунке 1 для ТС, сопротивлений, на рисунке 2 – для ТП и напряжения постоянного тока.

- 6.3.4 Подключить выход ПИ 4-20мА к калибратору ИКСУ-260L (далее калибратор). В режиме работы с ТП и датчиками напряжения, в качестве источника сигнала использовать компаратор-калибратор КМ300Р (далее компаратор). В режимах работы с ТС и датчиками сопротивления, в качестве источника сигнала использовать меры электрического сопротивления МС3070 (далее - меры сопротивления). Поочередно устанавливать значения входного сигнала, фиксировать значения выходного сигнала «ток 4-20 мА» - на калибраторе.
- 6.3.5 Определение основной погрешности ПИ для работы с ТС и датчиками сопротивления производить для 3-х или 4-х проводной схемы подключения.
 - 6.3.6 В режиме работы ПИ с ТП собирают схему согласно рисунку 3.

- a) К клеммам поверяемого преобразователя подключают удлиняющие (компенсационные) провода по ГОСТ 1790-77, ГОСТ 1791-67 к ТП (в соответствии с требованиями по ГОСТ 8.338-2002). Тип компенсационных проводов соответствовать типу НСХ установленному на ПИ. Концы удлиняющих проводов соединяют с медными проводами, скрутки проводов помещают в пробирки заполненные маслом, а затем пробирки помещают в нулевой термостат (или сосуд Дьюара, заполненный льдоводяной смесью). Температуру в сосуде Дьюара контролируют термометром с пределом допускаемой абсолютной погрешности не более ±0,05 °C.
 - б) Подключают медные провода к компаратору напряжений.
- 6.3.7 Рассчитать основную приведенную погрешность в каждой точке измерения по формуле (А.2).
- 6.3.8 При поверке ПИ в режиме работы с ТП преобразователь считается прошедшим поверку, если наибольшее из рассчитанных значений основной приведенной погрешности с учетом допускаемой приведенной погрешности внутренней автоматической компенсации температуры свободных (холодных) концов термопары рассчитанной по формуле (А.3) не превышает значения, указанного в Приложении А.

7 Проведение поверки преобразователей измерительных исполнений VM-Exi-105-3-G-HART, VM-Exi-105-4-G-HART, VM-104-3-G-HART, VM-104-4-G-HART, VM-103-3-HART, VM-103-4-HART

7.1 Внешний осмотр


- 7.1.1 Внешним осмотром ПИ проверить отсутствие механических повреждений.
- 7.1.2 Проверить соответствие маркировки ПИ свидетельству о приемки в настоящем РЭ.

7.2 Опробование

- 7.2.1 Собрать схему измерений, приведенную на рисунке 4 для TC, сопротивлений или на рисунке 5 для TП и напряжения постоянного тока.
- 7.2.2 Подключить выход ПИ 4-20мА к калибратору ИКСУ-260L или BEAMEX МС6 (-R). В режиме работы с ТП и датчиками напряжения, в качестве источника сигнала использовать компаратор-калибратор КМ300P. В режимах работы с ТС и датчиками сопротивления, в качестве источника сигнала использовать меры электрического сопротивления МС3070.
- 7.2.3 Установить значение соответствующее настроенному на ПИ типу входного сигнала и лежащего в диапазоне измерений ПИ в соответствии с Приложением Б.
- 7.2.4 Фиксировать значения выходного тока на калибраторе $\overline{\rm UKCY\text{-}}260{\rm L}$ или BEAMEX MC6 (-R).
- 7.2.5 ПИ считается пригодным к дальнейшей поверке, если на дисплее калибратора ИКСУ-260L индицируется значение выходного сигнала «ток 4-20 мА».

7.3 Определение основной приведенной погрешности

- 7.3.1 При первичной и периодической поверке количество поверяемых типов НСХ и входных сигналов преобразователя согласовывают с пользователем. Допускается проводить поверку в диапазоне измерений, согласованным с пользователем, но лежащим внутри полного диапазона измерений ПИ. При этом делают соответствующую запись в паспорте (формуляре) и (или) в свидетельстве о поверке.
- 7.3.2 Определение основной погрешности проводить по пяти точкам: 5 ± 5 , 25 ± 5 , 50 ± 5 , 75 ± 5 и 100 ± 5 % диапазона.
 - 7.3.3 Собрать схему измерений, приведенную на рисунке 4 для ТС, сопротивлений, на

- 7.3.4 Подключить выход ПИ 4-20мА к калибратору ИКСУ-260L или BEAMEX МС6 (-R) (далее калибратор). В режиме работы с ТП и датчиками напряжения, в качестве источника сигнала использовать компаратор-калибратор КМ300Р (далее компаратор). В режимах работы с ТС и датчиками сопротивления, в качестве источника сигнала использовать меры электрического сопротивления МС3070 (далее меры сопротивления). Поочередно устанавливать значения входного сигнала, фиксировать значения выходного сигнала «ток 4-20 мА» на калибраторе, для выходного сигнала «цифровой код» на дисплее компьютера.
- 7.3.5 Определение основной погрешности ПИ для работы с ТС и датчиками сопротивления производить для 3-х или 4-х проводной схемы подключения.
- 7.3.6 В режиме работы ПИ с ТП погрешность определяют в двух режимах: с отключенной и с включенной схемой компенсации.
- 7.3.7 При поверке с включенной схемой компенсации холодного спая собирают схему согласно рисунку 6.

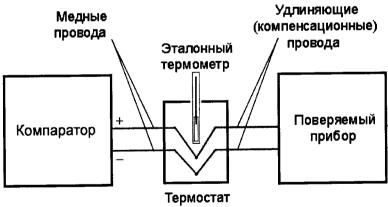


Рисунок 6

удлиняющие подключают преобразователя К поверяемого клеммам a) (компенсационные) провода по ГОСТ 1790-77, ГОСТ 1791-67 к ТП (в соответствии с проводов компенсационных 8.338-2002). Тип ГОСТ требованиями по соответствовать типу НСХ установленному на ПИ. Концы удлиняющих проводов соединяют с медными проводами, скрутки проводов помещают в пробирки заполненные маслом, а затем пробирки помещают в нулевой термостат (или сосуд Дьюара, заполненный льдоводяной смесью). Температуру в сосуде Дьюара контролируют термометром с пределом

допускаемой абсолютной погрешности не более ±0,05 °C.

б) Подключают медные провода к компаратору напряжений.

7.3.8 При поверке с выключенной схемой компенсации холодного спая собирают схему согласно рисунку 7.

Рисунок 7

- 7.3.9 Рассчитать основную приведенную погрешность в каждой точке измерения по формуле (Б.2).
- 7.3.10 При поверке с включенной схемой компенсации холодного спая ПИ считается прошедшим поверку, если наибольшее из рассчитанных значений основной приведенной погрешности с учетом допускаемой приведенной погрешности внутренней автоматической компенсации температуры свободных (холодных) концов термопары рассчитанной по формуле (Б.3) не превышает значения, указанного в Приложении Б.

При поверке с выключенной схемой компенсации холодного спая ПИ считается прошедшим поверку, если наибольшее из рассчитанных значений основной приведенной погрешности не превышает значения, указанного в Приложении Б.

8 Оформление результатов поверки

- 8.1 Преобразователи прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. На них оформляется свидетельство о поверке в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г. и (или) ставится знак поверки в паспорт и делается соответствующая запись в разделе «Свидетельство о приемке».
- 8.2 При отрицательных результатах поверки, в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г., оформляется извещение о непригодности.
- 8.3 Результаты поверки оформляются протоколом по форме, приведенной в приложении А. Допускаются компьютерные записи и хранение протоколов поверки.
- 8.4 По согласованию с заказчиком допускается исключать часть диапазона измерений, в котором в процессе поверки установлено несоответствие нормируемым значениям метрологических характеристик, приведенных в Приложении А или в Приложении Б.
- 8.5 По требованию заказчика допускается сокращать часть нормируемого диапазона измерений исходя из конкретных условий применения преобразователей.

Разработал:

Младший научный сотрудник научно-исследовательского отделения МО термометрии и давления (НИО 207) ФГУП «ВНИИМС»

Л.Д. Маркин

Hayenbreux 440207 _____UTHCOTOBAA.

Метрологические и технические характеристики преобразователей измерительных исполнений VM-Exi-102-1-G, VM-Exi-102-2-G, VM-101-1-G, VM101-2-G, VM-100-1, VM-100-2

Типы ПП, поддерживаемые ПИ, приведены в таблице А.1. НСХ ПП $\,$ температуры по $\,$ ГОСТ $\,$ 6651-2009 $\,$ и $\,$ ГОСТ $\,$ Р $\,$ 8.585-2001.

Таблица А.1 – метрологические характеристики

Габлица А.1 – метрологические характеристики					
	Максимальный		Пределы допускаемой основной		
Тип НСХ,	диапазон измерений		абсолютной погрешности (при		
входные			температуре окружающей среды		
сигналы	мВ, Ом	°C	20±5 °C)		
	,		Класс точности 0,1		
К	-5,89152,410 мВ	-2001300	±1,50 °C		
L	-9,48866,466 мВ	-200800	±1,00 °C		
N	-4,34547,513 мВ	-2701300	±1,58 °C		
J	-7,89051,877 мВ	-200900	±1,10 °C		
S	0,00016,777 мВ	01600	±1,60 °C		
В	0,43113,591 мВ	3001800	±1,50 °C		
R	0,00018,849 мВ	01600	±1,60 °C		
Напряжение	-1570 мВ	-	±0,085 мВ		
50M	10,26692,8 Ом	-180200	±0,38 °C		
100M	20,53185,60 Ом	-180200	±0,38 °C		
50П	8,62197,58 Ом	-200850	±1,06 °C		
100Π	17,24395,16 Ом	-200850	±1,06 °C		
Pt100	18,52390,48 Ом	-200850	±1,06 °C		
Pt500	92,61952,4 Ом	-200850	±1,00 °C		
Pt1000	185,23904,8 Ом	-200850	±1,06 °C		
Сопротивление	 	_	±0,4 Ом		
Сопротивление		-	±4,0 Ом		
Потенциометр	40400 Ом	_	±0,4 Ом		
	1000	_	±3,6 Ом		
Потенциометр	400+000 CM				

Примечания:

- 1. Допускается изготовление ПИ с диапазонами измерений отличными от приведенных в таблице 1, но не превышающих нижней и верхней границы приведенных диапазонов.
- 2. Типы НСХ термопреобразователей сопротивления и термоэлектрических преобразователей по ГОСТ 6651-2009 и ГОСТ Р 8.585-2001 соответственно.

Пределы допускаемой основной приведенной погрешности ИП (при температуре окружающей среды 20 ± 5 °C), в зависимости от класса точности:

ПИ имеет линейно возрастающую зависимость выходного тока от измеряемого параметра (температура, напряжение, сопротивление) рассчитываемую по формуле:

$$I_p = I_H + [(X - X_H)/(X_B - X_H)] (I_B - I_H),$$
 (A.1)

где:

Ір - расчетное значение выходного тока, мА;

Т - значение измеренного параметра, °С, мВ, Ом;

Хв, Хн - верхний и нижний пределы диапазона измерений параметра, °С, мВ, Ом;

Ів, Ін - верхний и нижний пределы выходного тока, мА.

Пределы изменения выходного тока, в диапазоне измерений входного параметра, от 4 до 20 мА по ГОСТ 26.011-80.

Выходной ток вне границ температурного диапазона (аварийный режим) 3,5 и 22 мА.

Время установления выходного сигнала, в течение которого выходной сигнал входит в зону предела допускаемой основной погрешности, не более 5 секунд.

Пределы основной погрешности для различных диапазонов входных параметров, находящихся в пределах разрешающей способности аналого-цифрового преобразователя ПИ, указаны в таблице A.1.

Пределы допускаемой основной погрешности, выраженной в виде приведенной погрешности в процентах от нормирующего значения, определяются по формуле:

$$\gamma = [(I - Ip)/(IB - IH)] 100\%,$$
 (A.2)

где:

γ - пределы допускаемой основной приведенной погрешности, %;

I - измеренное значение выходного тока, мА;

Ір – расчетное значение выходного тока, мА;

Ів - верхний предел значения выходного тока мА;

Ін - нижний предел значения выходного тока, мА.

Пределы допускаемой вариации выходного сигнала ПИ не более 0,2 предела допускаемой основной погрешности.

Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды в диапазоне:

- от минус 40 (60) до минус 10 °C – не более предела допускаемой основной приведенной погрешности;

- св. минус 10 °C до плюс 15 °C, св. плюс 25 до плюс 70 (85) °C – не более половины предела допускаемой основной приведенной погрешности.

Пределы допускаемой дополнительной погрешности, вызванной воздействием постоянных или переменных магнитных полей сетевой частоты напряжённостью до 400 А/м, не превышают 0,5 предела допускаемой основной погрешности.

Пределы допускаемой абсолютной погрешности внутренней автоматической компенсации температуры свободных (холодных) концов термопары, $^{\circ}$ C: $\pm 0,5$.

Пределы допускаемой приведенной погрешности внутренней автоматической компенсации температуры свободных (холодных) концов термопары определяются по формуле:

$$\gamma = \pm [0.5/(T_B - T_H)] 100\%,$$
 (A.3)

где:

γ - пределы допускаемой основной приведенной погрешности, %;

Тв - верхний предел максимального диапазона измерений для конкретного типа HCX TП, °C;

 ${
m Th}$ - нижний предел максимального диапазона измерений для конкретного типа HCX TП, °C.

Время установления рабочего режима не более 15 минут.

Метрологические и технические характеристики преобразователей измерительных исполнений VM-Exi-105-3-G-HART, VM-Exi-105-4-G-HART VM-104-3-G-HART, VM-104-4-G-HART VM-103-3-HART, VM-103-4-HART

Типы ПП, поддерживаемые ПИ, приведены в таблице Б.1. НСХ ПП температуры по ГОСТ 6651-2009 и ГОСТ Р 8.585-2001. Преобразование сигналов ПП типов: преобразователь напряжения, преобразователь сопротивления, потенциометрические датчики может производиться без линеаризации характеристики, или с линеаризацией по характеристике заказчика. ПИ изготавливаются по классу точности 0,05 и 0,1. Класс точности, указан в паспорте изделия.

Таблица Б.1 – метрологические характеристики

Таблица Б.1 – метрологические характеристики					
	Диапазон измерений		Пределы допускаемой основной абсолютной погрешности (при		
Тип НСХ, входные			температуре от 20±5 °C), в зави	кружающей среды исимости от класса	
сигналы	мВ, Ом	°C	точности		
			Класс точности	Класс точности	
			0,05	0,1	
К	от минус 5,891 до	от минус 200 до	±0,75 °C	0,1 ±1,50 °C	
	плюс 52,410 мВ	плюс 1300			
L	от минус 9,488 до	от минус 200 до	±0,50 °C	±1,00 °C	
	плюс 66,466 мВ	плюс 800			
N	от минус 4,345 до	от минус 200 до	±0,75 °C	±1,50 °C	
	плюс 47,513 мВ	плюс 1300			
J	от минус 7,890 до	от минус 200 до	±0,55 °C	±1,10 °C	
	плюс 51,877 мВ	плюс 900			
S	от 0,000 до	от 0 до 1600	±0,80 °C	±1,60 °C	
	16,777 мВ				
В	от 0,431 до	от 300 до 1800	±0,75 °C	±1,50 °C	
	13,591 мВ				
R	от 0,000 до	от 0 до 1600	±0,80 °C	±1,60 °C	
	18,849 мВ				
Попражоние	от минус 15	_	±0,0425 MB	±0,085 мВ	
Напряжение	до плюс 70 мВ	•			
50M	от 10,266 до	от минус 180 до	±0,19 °C	±0,38 °C	
	92,8 Ом	плюс 200			
100M	от 20,53 до	от минус 180 до	±0,19 °C	±0,38 °C	
	185,60 Ом	плюс 200			
50П	от 8,62 до	от минус 200 до	±0,53 °C	±1,06 °C	
	197,58 Ом	плюс 850			
100∏	от 17,24 до	от минус 200 до	±0,53 °C	±1,06 °C	
	395,16 Ом	плюс 850		Market 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Pt100	от 18,52 до	от минус 200 до	±0,53 °C	±1,06 °C	
	390,48 Ом	плюс 850			
Pt500	от 92,6 до	от минус 200 до	±0,50 °C	±1,00 °C	

	Диапазон измерений		Пределы допускаемой основной абсолютной погрешности (при	
Тип НСХ, входные			температуре окружающей среды 20±5 °C), в зависимости от класса	
сигналы	мВ, Ом	°C	точности	
	,		Класс точности	Класс точности
			0,05	0,1
	1952,4 Ом	плюс 850		
Pt1000	от 185,2 до	от минус 200 до	±0,53 °C	±1,06 °C
	3904,8 Ом	плюс 850		
Сопротивление	от 1 до 400 Ом	-	±0,2 Ом	±0,4 Ом
Сопротивление	от 1 до 4000 Ом	-	±2,0 Ом	±4,0 Ом
Потенциометр	от 40 до 400 Ом	-	±0,2 Ом	±0,4 Ом
Потенциометр	от 400 до 4000 Ом	•	±1,8 Ом	±3,6 Ом

Примечания:

- 1. Допускается изготовление ПИ с диапазонами измерений отличными от приведенных в таблице 5, но не превышающих нижней и верхней границы приведенных диапазонов.
- 2. Типы HCX термопреобразователей сопротивления и термоэлектрических преобразователей по ГОСТ 6651-2009 и ГОСТ Р 8.585-2001 соответственно.

Пределы допускаемой основной приведенной погрешности ИП (при температуре окружающей среды 20 ± 5 °C), в зависимости от класса точности:

- для класса 0,05:.....±0,05 %;
- для класса 0,1:....±0,1 %

Установка требуемых HCX и температурного диапазона производится с помощью оборудования и программного обеспечения HART протокола.

ПИ имеет линейно возрастающую зависимость выходного тока от измеряемого параметра (температура, напряжение, сопротивление) рассчитываемую по формуле:

$$Ip = I_H + [(X - X_H)/(X_B - X_H)] (I_B - I_H),$$
 (5.1)

где:

Ір - расчетное значение выходного тока, мА;

X - значение измеренного параметра, °С, мВ, Ом;

Хв, Хн - верхний и нижний пределы диапазона измерений параметра, °С, мВ, Ом;

Ів, Ін - верхний и нижний пределы выходного тока, мА.

Пределы изменения выходного тока, в диапазоне измерений входного параметра, от 4 до 20 мА по ГОСТ 26.011-80, или инверсный режим - от 20 до 4 мА.

Ограничения выходного сигнала и сигнализация аварийных режимов работы соответствуют стандарту NAMUR NE43.

Выход за нижний предел установленного диапазона - линейное снижение выходного тока с 4,0 мА до 3,8 мА. Аварийный сигнал - не более 3,6 мА.

Выход за верхний предел установленного диапазона - линейное увеличение выходного тока с 20,0 мА до 20,5 мА. Аварийный сигнал - не менее 21 мА.

Время установления выходного сигнала, в течение которого выходной сигнал входит в зону предела допускаемой основной погрешности, зависит от установленного программно коэффициента фильтрации входного сигнала, минимальное значение 0,5 секунды, максимальное значение 60 секунд.

Пределы основной погрешности для различных диапазонов входных параметров, находящихся в пределах разрешающей способности аналого-цифрового преобразователя ПИ, указаны в таблице Б.1.

Пределы допускаемой основной погрешности, выраженной в виде приведенной погрешности в процентах от нормирующего значения, определяются по формуле:

$$\gamma = [(I - Ip)/(IB - IH)] 100\%,$$
 (6.2)

гле:

γ - пределы допускаемой основной приведенной погрешности, %;

I - измеренное значение выходного параметра, мА;

Ір – расчетное значение выходного параметра, мА;

Ів - верхний предел значения выходного параметра, мА;

Ін - нижний предел значения выходного параметра, мА.

Пределы допускаемой вариации выходного сигнала ПИ не более 0,2 предела допускаемой основной погрешности.

Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды в диапазоне:

- от минус 40 (60) до минус 10 °C не более предела допускаемой основной приведенной погрешности;
- св. минус 10 °C до плюс 15 °C, св. плюс 25 до плюс 70 (85) °C не более половины предела допускаемой основной приведенной погрешности.

Пределы допускаемой дополнительной погрешности, вызванной воздействием постоянных или переменных магнитных полей сетевой частоты напряжённостью до 400 А/м, не превышают 0,5 предела допускаемой основной погрешности.

Пределы допускаемой абсолютной погрешности внутренней автоматической компенсации температуры свободных (холодных) концов термопары, °C:±0,5

Пределы допускаемой приведенной погрешности внутренней автоматической компенсации температуры свободных (холодных) концов термопары определяются по формуле:

$$\gamma = \pm [0.5/(T_B - T_H)] 100\%,$$
 (5.3)

гле:

ү - пределы допускаемой основной приведенной погрешности, %;

Тв - верхний предел максимального диапазона измерений для конкретного типа НСХ ТП. °C:

Тн - нижний предел максимального диапазона измерений для конкретного типа НСХ ТП, °С.

Время установления рабочего режима не более 15 минут.